Автор работы: Пользователь скрыл имя, 23 Июня 2013 в 10:27, курс лекций
Измерения являются одним из важнейших путей раз¬вития научно-технического прогресса, познания природы и общества человеком. В практической деятельности мы постоянно имеем дело с измерениями, они имеют первостепенное значение во всех сферах производства и потребления, оценки качества товаров, внедрения новых технологий и управления ими.
Метод измерений — прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы измерений классифицируются по различным признакам. Один из них — это физический принцип, лежащий в основе измерений. Например, проведение измерений с помощью ядерного магнитного резонанса (магнитные измерения), электронной спектроскопией (оптические измерения) и др. Наиболее распространенное деление методов измерений — это на методы непосредственной оценки и методы сравнения. Метод непосредственной оценки позволяет определить значение величины по показанию средства измерения, которое заранее проградуировано в единицах измеряемой величины или в единицах других величин, от которых она зависит. Метод сравнения предусматривает сопоставление измеряемой величины с величиной, воспроизводимой мерой. Особенностью этого метода является непосредственное участие мер в процессе измерения. Методы сравнения подразделяются на дифференциальный, нулевой, замещения и совпадений. Каждый метод измерений характеризуется определенной погрешностью измерений.
Погрешность измерений — отклонение результатов измерений от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму целого ряда составляющих, каждая из которых имеет свою причину.
Сходимость— близость друг к другу результатов измерений одной и той же величины, полученных по одной методике, выполненных одним и тем же средством измерений, одним и тем же оператором в одинаковых условиях, в одной и той же лаборатории.
Воспроизводимость — близость результатов измерений одной и той же величины, полученных по единой методике, выполненной в разных лабораториях, разными экземплярами средств измерений, разными операторами, в разное время. Воспроизводимость результатов измерений зависит также от однородности и стабильности характеристик испытуемого образца.
Точность — характеристика качества измерений, отражающая близость к нулю погрешности результатов измерений. Высокая точность измерений соответствует малым величинам погрешностей измерения.
В 2002 г. в России введены в действие национальные стандарты ГОСТ Р ИСО 5725-2002 часть 1-6 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», которые являются прямым применением шести частей основополагающего международного стандарта ИСО 5725. Эти стандарты используются в практической деятельности при разработке, аттестации и применении методик выполнения измерений, стандартизации методик контроля (испытаний, измерений, анализа), испытаниях продукции, в том числе для целей подтверждения соответствия, оценки компетентности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2006. Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных величин, характеризующих измеряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. Следует отметить, что в отечественной метрологии точность и погрешность результатов измерений, как правило, определяются сравнением результатов измерений с истинным или действительным (условно истинным) значением измеряемой величины. Часто за действительное значение принимают общее среднее значение (математическое ожидание) установленной совокупности результатов измерений. В ИСО 5725 вместо термина «действительное значение» введен термин «принятое опорное значение», который и рекомендуется для использования в практике. Термины «правильность» и «прецизионность» в отечественных нормативных документах по метрологии до введения серии стандартов ГОСТ Р ИСО 5725 не использовались.
Дадим определение этих терминов.
Правильность характеризует степень близости среднего арифметического значения большого числа результатов измерений к истинному (действительному) или принятому опорному значению. Показателем правильности обычно является значение систематической погрешности.
Прецизионность — степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях. Мера прецизионности обычно вычисляется как стандартное отклонение результатов измерений. Крайние показатели прецизионности — повторяемость (сходимость) и воспроизводимость широко используются в отечественных нормативных документах, в том числе в большинстве национальных стандартов на методы контроля. Термин «точность» в соответствии с ГОСТ Р ИСО 5725-1—2002 определяется как степень близости результата измерений к применяемому опорному значению.
Внедрение стандартов ГОСТ Р ИСО 5725 направлено на более эффективную реализацию требований национальной системы стандартизации при разработке стандартов на методы контроля продукции различных отраслей промышленности.
Таким образом, при правильном выборе метода измерений, повышая такие показатели, как точность, правильность, уменьшая погрешности измерений, можно достигать высокого качества измерений.
Лекция № 7
Средства измерений
Измерения выполняются
с помощью специальных техничес
Рис. 8.3. Классификация средств измерений
Меры предназначены
для воспроизведения и (или)хранения величины
одного или нескольких заданных
размеров. К мерам, например, относятся
гири, концевые меры длины, нормальные
элементы. Меры, воспроизводящие измеряемую
величину одного размера, называются однозначными.
Меры, воспроизводящие измеряемую величину
разных размеров, называются многозначными.
Примером многозначной меры является
миллиметровая линейка, воспроизводящая,
наряду с миллиметровыми, также и сантиметровые
размеры длины. Применяются также меры
в виде наборов и магазинов мер.
Часто к однозначным
мерам относят стандартные обра
Измерительные преобразователи предназначены для преобразования измеряемой величины в другую величину или измерительный сигнал с целью представления измеряемой величины в форме, удобной для обработки, хранения, дальнейших преобразований, индикации или передачи. Данные преобразователи входят в состав измерительных приборов, установок, систем или применяются вместе с каким-либо средством измерений. Самым распространенным по количеству видом средств измерений являются первичные измерительные преобразователи, которые служат для непосредственного восприятия измеряемой величины, как правило, неэлектрической, и преобразования ее в другую величину — электрическую.
По характеру преобразования измерительные преобразователи разделяются на аналоговые, аналого-цифровые (АЦП), Цифро-аналоговые (ЦАП). Указанные преобразователи почти всегда являются промежуточными.
Измерительные
приборы предназначены для полу
Измерительные приборы прямого действия преобразуют измеряемую величину, как правило, без изменения ее рода и отображают ее на показывающем устройстве, проградуированном в единицах этой величины (амперметры, вольтметры и др.).
Более точными являются приборы сравнения, предназначенные для сравнения измеряемых величин с величинами, значения которых известны. Например, измерение массы с помощью эталонных гирь на равноплечных весах или с помощью мостовых цепей. По способу отчета значений измеряемых величин приборы подразделяются на показывающие, в том числе на аналоговые и цифровые, и регистрирующие. Регистрирующие приборы по способу записи делятся на самопишущие и печатающие. В самопишущих приборах запись показаний представляется в графическом виде, в печатающих — в числовой форме.
Измерительные установки и системы представляют собой совокупность функционально объединенных средств измерений, мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств с целью измерений одной или нескольких величин объекта измерений.
В настоящее
время большинство
Лекция № 8
Принципы выбора средств измерений
Выбор средств измерений определяет качество измерений. Измерения, выполняемые средствами измерений более низкого класса, чем требуемые, приводят к росту забракованной продукции, неверным выводам по качеству продукции.
При выборе средств измерений необходимо учитывать
ряд факторов:
• характеристику измеряемой величины и диапазон
измерений;
• потери из-за погрешностей измерений.
Отсутствие единого фактора,
по которому можно сравнивать средства
измерений, затрудняет решение задачи.
Основными характеристиками средств измерений являются погрешности. Они наиболее существенно влияют на качество измерений, поэтому при выборе средств измерений их рассматривают в первую очередь.
Существует три основных подхода выбора средств измерений.
Экономический подход (наиболее оптимальный, так как учитывает практически все показатели). При этом необходимо иметь в виду то, что:
Как правило, с ростом погрешности изменений потери растут, а затраты на измерения снижаются.
Вероятностный подход заключается в выборе точности средств измерений по заданному допуску на контролируемый параметр изделия и заданным значениям брака контроля I и II рода (необнаруженный и ложный брак).
Если контроль осуществляется абсолютно точными средствами измерений, все изделия, находящиеся в поле допуска, были бы признаны годными, а изделия, у которых измеряемый параметр превышает допуск, были бы признаны негодными.
Директивный подход позволяет установить соотношения между допуском на контролируемый параметр и предельно допускаемой погрешностью измерений. Однако такой подход не учитывает важности измеряемого параметра и экономических последствий от недостоверного контроля.
Лекция № 9-10
Метрологические характеристики средств измерений
Метрологическая характеристика средств измерения- это характеристика одного из свойств средства измерений, влияющая на результат измерений и его погрешность. Для каждого типа средств измерений устанавливают свои метрологические характеристики. Тип средств измерений — совокупность средств измерений, предназначенных для измерения одних и тех же величин, выраженных в одних и тех же единицах величин, основанных на одном и том же принципе действия, имеющих одинаковую конструкцию и изготовленные по одной и той же технической документации. Перечень метрологических характеристик, правила выбора комплекса нормируемых метрологических характеристик для средств измерений и способы их нормирования изложены в ГОСТ 8.009—84 «Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений».
Погрешности измерений и средств измерений
В настоящее время измерение является неотъемлемой частью практически любой деятельности человека. Фактически измерения — это процесс, завершающим этапом которого является «результат измерения». Любой результат измерения содержит погрешность, которая складывается из ряда факторов.
Погрешность результатов измерения является важной характеристикой измерения, она вычисляется или оценивается, или приписывается полученному результату.
Погрешность результата измерения — это отклонение результата измерений (Хизм) от истинного (действительного) значения (Хист(действ) измеряемой величины. Чаще всего она указывает границы неопределенности значения измеряемой величины. Погрешность средства измерения — разность между показанием средства измерения и истинным (действительным) значением измеряемой величины. Она характеризует точность результатов измерений, проводимых данным средством. Эти два понятия во многом близки друг другу и классифицируются по одинаковым признакам. По форме представления погрешности разделяются на абсолютные, относительные и приведенные.