Автор работы: Пользователь скрыл имя, 30 Октября 2013 в 20:47, реферат
Тема моей контрольной работы “Основные понятия и представления генетики». Генетика – наука о наследственности и изменчивости организмов. Она занимает ведущее место в современной биологической науке. Эта тема заинтересовала меня тем, что в современном обществе генетические вопросы широко обсуждаются в разных аудиториях и с разных точек зрения, в том числе этической. Интерес к генетике человека обусловлен несколькими причинами. Во-первых, это естественное стремление человека познать самого себя. Во-вторых, после того как были побеждены многие инфекционные болезни – чума, холера, оспа и др., – увеличилась относительная доля наследственных болезней. В-третьих, после того как были поняты природа мутаций и их значение в наследственности, стало ясно, что мутации могут быть вызваны факторами внешней среды, на которые ранее не обращали должного внимания.
1.Введение-2
2.История развития генетики -4
3. Основные понятия генетики, методы их изучения-8
4. Определение гена. Основная функция гена-12
5. Роль и задачи генетики-15
6. Заключение-16
7. Список использованной литературы-19.
Содержание
1.Введение-2
2.История развития генетики -4
3. Основные понятия генетики, методы их изучения-8
4. Определение гена. Основная функция гена-12
5. Роль и задачи генетики-15
6. Заключение-16
7. Список использованной литературы-19.
Введение.
Тема моей контрольной
работы “Основные понятия и
представления генетики».
История развития генетики.
Человек издавна разводит домашних животных, выращивает культурные растения. При этом он все время улучшает их, оставляя для размножения лучших особей, - наиболее полезных для человека. По мере проникновения в сущность явлений наследственности и изменчивости организмов методы и приемы выведения новых сортов и пород улучшались и совершенствовались. Основы генетики были заложены чешским ученым Грегором Менделем в экспериментах, результаты которых были опубликованы в 1865 г. С тех пор генетика не остановилась в своем развитии. И. М. Сеченов, А. П. Богданов, Н. К. Кольцов, Г. Шаде, Эвери, Мак-Леод, Мак-Карти, Д.Уотсон - вот одни из тех великих ученых, которые внесли огромный вклад в науку о наследственности. Генетика в своем развитии прошла три хорошо очерченных этапа. Первый этап ознаменовался открытием Г. Менделем (1865) факторов наследственности и разработкой гибридологического метода, т. е. правил скрещивания организмов и учета признаков у их потомства. Мендель впервые осознал, что, начав с самого простого случая - различия по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей наследования признаков. Такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение экспериментов. Менделевские законы наследственности заложили основу теории гена - величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901-1903 г.г. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики. Важное значение имели работы датского ботаника В. Иоганнсена, который изучал закономерности наследования на чистых линиях фасоли. Он сформулировал также понятие "популяции" (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские "наследственные факторы" словом ген, дал определения понятий "генотип" и "фенотип". На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (цитогенетика). Т. Бовери (1902-1907), У .Сэттон и Э .Вильсон (1902-1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности. Решающее значение в ее обосновании имели исследования, проведенные на мушках дрозофилах американским генетиком Т. Г. Морганом и его сотрудниками (1910-1911) . Ими установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Морган установил также закономерности наследования признаков, сцепленных с полом. Cтало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного метагенеза, что позволило генетике из теоретической дисциплины перейти к прикладной. Третий этап в развитии генетики отражает достижения молекулярной биологии. И связан с использованием методов и принципов точных наук - физики, химии, математики, биофизики и других. А также изучение явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория "один ген - один 5. фермент" (Дж. Бидл. и Э. Татум, 1940): каждый ген контролирует синтез одного фермента; фермент в свою очередь контролирует одну реакцию из целого ряда биохимических превращений, лежащих в основе проявления внешнего или внутреннего признака организма. Эта теория сыграла важную роль в выяснении физической природы гена как элемента наследственной информации. В 1953 г. Ф. Крик и Дж. Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. Предложенная ими модель ДНК хорошо согласуется с биологической функцией этого соединения: способностью к самоудвоению генетического материала и устойчивому сохранению его в поколениях - от клетки к клетке. Эти свойства молекул ДНК объяснили и молекулярный механизм изменчивости: любые отклонения от исходной структуры гена, ошибки самоудвоения генетического материала ДНК, однажды возникнув, в дальнейшем точно и устойчиво воспроизводятся в дочерних нитях ДНК. В последующее десятилетие эти положения были экспериментально подтверждены: уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке. Кроме того, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов - продуцентов антибиотиков, аминокислот. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена, определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. В последнее десятилетие возникло новое направление в молекулярной генетике - генная инженерия - система приемов, позволяющих биологу конструировать искусственные генетические системы. Генная инженерия основывается на универсальности генетического кода: триплеты нуклеотидов ДНК программируют включение аминокислот в белковые молекулы всех организмов - человека животных, растений, бактерий, вирусов. Благодаря этому можно синтезировать новый ген или выделить его из одной бактерии и ввести его в генетический аппарат другой бактерии, лишенной такого гена. Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека. Новая же биология, построенная на принципах генетики, изучает простейшие компоненты живого организма, пренебрегая остальным, и постепенно восходит на макроуровень. В этом и состоит историческое значение генетики. Изменились не только методы исследования живых организмов, но и представления людей о таких понятиях, как наследственность, изменчивость и т. д. Сегодня человечество уже строит целые программы («Геном человека») - основная цель которых состоит в прочтении наследственности в ДНК человека, изучении сочетания связок генов, их динамики, функционального значения. В целом, открытие генетики - это прорыв в биологии. Революция в ней была подготовлена всем ходом могущественного развития идей и методов мендилизма и хромосомной теории наследственности. Современная молекулярная генетика - это истинное детище всего XX века, которое на новом уровне впитало в себя прогрессивные итоги развития хромосомной теории наследственности, теории мутации, теории гена, методов цитологии и генетического анализа.
Основные понятия генетики, методы их изучения.
В органическом мире наблюдается
удивительное сходство между родителями
и детьми, между братьями и сестрами,
а также другими
Определение гена. Основная функция гена.
Генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена. Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм. Несмотря на то, что теперь уже многое известно о строении хромосом, о структуре и функциях ДНК, дать точное определение гена все еще трудно. Одно из возможных определений гена рассматривает ген как единицу функции. Можно сказать, что ген - это небольшой участок хромосомы, обладающий определенной биохимической функцией и оказывающий специфическое влияние на свойства особи. Гипотеза А. Гаррода. что "ген - фермент", или, что правильнее, "ген - белок", фактически означает, что гены содержат информацию о последовательности аминокислот в белках и продуктом деятельности гена является определенный белок. Если выразиться еще точнее, то ген содержит информацию для синтеза не молекулы белка в целом, а лишь молекулы полипептида. Белки, же, часто представляют собой комбинацию нескольких полипептидов. Каким же образом информация о последовательности оснований ДНК преобразуется в последовательность аминокислот в белках? Есть всего четыре различных основания - А, Т, Г, Ц, а в состав белков входят 20 различных аминокислот. Если бы одно основание определяло положение одной аминокислоты в первичной структуре какого-то белка, то в состав этого белка могло бы входить только четыре вида аминокислот. Если бы каждая аминокислота кодировалась двумя основаниями, то число возможных пар составляло бы 42 = 16. Этого также недостаточно для кодирования 20 аминокислот. Только код, состоящий из трех оснований, мог бы обеспечить включение всех 20 аминокислот в состав белка, поскольку число возможных триплетов здесь 43 = 64. Таким образом, каждой аминокислоте должно соответствовать три последовательных основания ДНК. Эта зависимость между основаниями и аминокислотами известна под названием генетического кода. Основные особенности генетического кода могут быть сформулированы следующим образом: Аминокислота кодируется триплетом оснований в полинуклеотидной цепи ДНК. Код является универсальным. У всех живых организмов одни и те же триплеты кодируют одни и те же аминокислоты. Аминокислота может кодироваться более чем одним триплетом (число возможных триплетов 64, а число аминокислот 20). Код неперекрывающийся, то есть каждое основание может принадлежать только одному триплету. Механизм синтеза белков в клетке считывает последовательность оснований в одной половине молекулы ДНК группами по три и затем каждую "тройку" оснований переводит в конкретную аминокислоту и в конкретный белок. Механизм синтеза белка в клетке чрезвычайно сложен. Он предполагает участие другого вида нуклеиновых кислот - рибонуклеиновой кислоты (РНК) и ряда клеточных структур вне ядра клетки. Из всего выше изложенного, можно сказать, что основной функцией гена является кодирование информации, необходимой для синтеза специфического белка. Выводы Материальным субстратом наследственности являются молекулы дезоксирибонуклеиновой кислоты (ДНК). Молекулы ДНК способны к удвоению с большой точностью воспроизведения. 9. Молекулы ДНК способны образовывать бесконечное разнообразие различных форм. ДНК представляет собой цепь нуклеотидов, в состав которых входят три компонента - фосфорный, углеводный и азотистое основание (аденин, гуанин, тимин или цитозин). Молекула ДНК состоит из двух полинуклеотидных цепей, соединенных через азотистые основания, и имеет комплементарное строение: связи между нитями образуются только в парах аденин-тимин (А-Т) и гуанин-цитозин (Г-Ц). Генетическая информация кодируется последовательностью оснований в цепи ДНК. Основной функцией гена является кодирование информации для синтеза специфического белка. Аминокислоты для синтеза белка кодируются триплетами оснований в цепи ДНК (генетический код). Схемы относительного расположения сцепленных между собой генов называются генетическими картами хромосом. Они отображают реально существующий линейный порядок размещения генов в хромосомах и важны как в теоретических исследованиях, так и при проведении селекционной работы, т. к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея генетические карты хромосом, можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать передачу потомству генов, обусловливающих развитие трудно анализируемых признаков. Многочисленные факты отсутствия (вопреки законам Менделя) независимого распределения признаков у гибридов второго поколения были объяснены хромосомной теорией наследственности Основные положения хромосомной теории наследственности: 1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов каждой из негомологичных хромосом уникален. 2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место). 3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом. 4. Сцепление не абсолютно, так как в профазе мейоза может происходить кроссинговер и гены, находящиеся в одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления, и наоборот.
Роль и задачи генетики.
Генетика - сравнительно молодая наука. Но перед ней стоят очень серьезные для человека проблемы. Так генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека: короткопалость, мышечная атрофия и другие. С помощью новейших цитологических методов, цитогенетических в частности, производят широкие исследования генетических причин различного рода заболеваний, благодаря чему существует новый раздел медицины - медицинская цитогенетика. Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетики. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок. Работая над темой «Основные понятия и представления генетики», я пришла к выводу, что генетика направлена на: 1. Раскрытие законов воспроизведения живого по поколениям; 2. Создание новых свойств у организмов; 3. Выявление законов индивидуального развития особи; 4. Выявления материальной основы исторических преобразований организмов в процессе эволюции. Генетика как наука решает следующие основные задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и ее материальные носители; анализирует способы передачи наследственной информации от одного поколения организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на их условий среды обитания; изучает закономерности и механизмы изменчивости и ее роль в приспособительных реакциях и в эволюционном процессе; изыскивает способы исправления поврежденной генетической информации. Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.