Автор работы: Пользователь скрыл имя, 16 Октября 2013 в 11:47, реферат
Актуальность данного исследования определила цель и задачи работы:
-цель работы – рассмотреть альтернативные ресурсы энергии, виды, классификация, перспективы.
Для достижения цели необходимо решить следующие задачи:
1.Исследовать альтернативные источники энергии: виды и классификацию;
2.На основании теоретического анализа изучения проблемы, систематизировать знания о видах альтернативных ресурсов энергетики в современных условиях;
|
|
Тем не менее ученые считают, что
технически возможно и экономически
выгодно использовать лишь очень
небольшую часть приливного потенциала
Мирового океана – по некоторым
оценкам только 2%.При определении
технических возможностей большую
роль играют такие факторы, как характер
береговой линии, форма и рельеф
дна, глубина воды, морские течения
и ветер. Опыт показывает, что для
эффективной работы ПЭС высота приливной
волны должна быть не менее 5 м. Чаще
всего такие условия возникают
в мелких и узких заливах или
устьях рек, впадающих в моря и
океаны. Но подобных мест на всём земном
шаре не так уж много: по разным источникам
25, 30 или 40.
При оценке экономических выгод строительства
ПЭС также нужно учитывать, что наибольшие
амплитуды приливов-отливов характерны
для окраинных морей умеренного пояса.
Многие из этих побережий расположены
в необжитых местах, на большом удалении
от главных районов расселения и экономической
активности, следовательно, и потребления
электроэнергии. Нужно учитывать также
и то, что рентабельность ПЭС резко возрастает
по мере увеличения их мощности до 3-5 и
тем более 10-15 млн. кВт. Но сооружение таких
станций-гигантов, к тому же в отдаленных
районах, требует особенно больших затрат,
не говоря уже и о сложнейших технических
проблемах.
Считается, что наибольшими запасами приливной
энергии обладает Атлантический океан.
В его северо-западной части, на границе
США и Канады, находится залив Фанди, представляющий
собой внутреннюю суженную часть более
открытого залива Мен. Длина его 300 км при
ширине 90 км, глубина у входа более 200 м.
Этот залив знаменит самыми высокими в
мире приливами, достигающими 18 м. Очень
высоки приливы и у берегов Канадского
арктического архипелага. Например, у
побережья Баффиновой земли они поднимаются
на 15,6 м. В северо-восточной части Атлантики
примерно такие же приливы наблюдаются
в проливе Ла-Манш у берегов Франции, в
Бристольском заливе и Ирландском море
у берегов Англии и Ирландии.
Велики также запасы приливной энергии
в Тихом океане. В его северо-западной
части особенно выделяется Охотское море,
где в Тугурском и Пенжинском заливах
высота приливной волны составляет 9-13
м. Значительные приливы наблюдаются и
у побережий Китая и Корейского полуострова.
На восточном побережье Тихого океана
благоприятные условия для использования
приливной энергии имеются у берегов Канады,
Чилийского архипелага на юге Чили, в узком
и длинном Калифорнийском заливе Мексики.
В пределах Северного Ледовитого океана
по запасам приливной энергии выделяются
Белое море, в Мезенской губе которого
приливы имеют высоту до 10 м, и Баренцево
море у берегов Кольского полуострова
(до 7 м). В Индийском океане запасы такой
энергии значительно меньше. В качестве
перспективных для строительства ПЭС
здесь обычно называются залив Кач Аравийского
моря (Индия) и северо-западное побережье
Австралии.
Несмотря на такие, казалось бы весьма
благоприятные, природные предпосылки,
строительство ПЭС пока имеет довольно
ограниченные масштабы. По существу реально
можно говорить лишь о более или менее
крупной промышленной ПЭС «Ранс» во Франции,
об опытной Кислогубской ПЭС на Кольском
полуострове (Россия) и канадско-американской
ПЭС в заливе Фанди.
При сооружении ПЭС необходимо всесторонне
оценивать их экологическое воздействие
на окружающую среду. Оно довольно велико.
В районах сооружения крупных ПЭС существенно
изменяется высота приливов, нарушается
водный баланс в акватории станции, что
может серьёзно сказаться на рыбном хозяйстве,
разведении устриц, мидий и пр.
^ К числу энергетических
ресурсов Мирового океана относят также
энергию волн и температурного градиента. Энергия ветровых волн суммарно
оценивается в 2,7 млрд. кВт в год. Опыты
показали, что ее следует использовать
не у берега, куда волны приходят ослабленными,
а в открытом море или в прибрежной зоне
шельфа. В некоторых шельфовых акваториях
волновая энергия достигает значительной
концентрации: в США и Японии – около 40
кВт на метр волнового фронта, а на западном
побережье Великобритании – даже 80 кВт
на 1 метр. Использование этой энергии,
хотя и в местных масштабах, уже начато
в Великобритании и Японии. Британские
острова имеют очень длинную береговую
линию, во многих местах море остается
бурным в течение длительного времени.
По оценкам ученых, за счет энергии морских
волн в английских территориальных водах
можно было бы получить мощность до 120
ГВт, что вдвое превышает мощность всех
электростанций, принадлежащих Британскому
центральному электроэнергетическому
управлению.
Впервые идею использования энергии разности
температур поверхностных и глубинных
слоев воды Мирового океана предложил
французский ученый д'Арсонвиль в 1881 году,
но первые разработки начались лишь в
1973 году. Энергию разности температур
различных слоев Мирового океана оценивают
в 20-40 трлн. кВт. Из них практически могут
быть использованы лишь 4 трлн. кВт.
Принцип действия этих станций заключается
в следующем: теплую морскую воду (24-32° С) направляют в теплообменник,
где жидкий аммиак или фреон превращаются
в пар, который вращает турбину, а затем
поступает в следующий теплообменник
для охлаждения и конденсации водой с
температурой 5-6 °С, поступающей с глубины 200-500
метров. Получаемую электроэнергию передают
на берег по подводному кабелю, но ее можно
использовать и на месте (для обеспечения
добычи минерального сырья со дна или
его выделения из морской воды). Достоинство
подобных установок – возможность их
доставки в любой район Мирового океана.
К тому же, разность температур различных
слоев океанической воды – более стабильный
источник энергии, чем, скажем, ветер, Солнце,
морские волны или прибой. Первая такая
установка была пущена в 1981 году на острове
Науру. Единственный недостаток таких
станций – их географическая привязанность
к тропическим широтам. Для практического
использования температурного градиента
наиболее пригодны те районы Мирового
океана, которые расположены между 20° с.ш. и 29° ю.ш., где температура воды у
поверхности океана достигает, как правило,
270-28°С, а на глубине 1 километр имеет
всего 40-5° С.
В океане, который составляет 72% поверхности
планеты, потенциально имеются различные
виды энергии – энергия волн и приливов;
энергия химических связей газов, солей
и других минералов; энергия течений, спокойно
и нескончаемо движущихся в различных
частях океана; энергия температурного
градиента и другие, и их можно преобразовывать
в стандартные виды топлива. Такие количества
энергии, многообразие её форм гарантируют,
что в будущем человечество не будет испытывать
в ней недостатка.
Океан наполнен внеземной энергией, которая
поступает в него из космоса. Она доступна
и безопасна, и не затрагивает окружающую
среду, неиссякаема и свободна. Из космоса
поступает энергия Солнца. Она нагревает
воздух, образуя ветры, вызывающие волны.
Она нагревает океан, который накапливает
тепловую энергию. Она приводит в движение
течения, которые в тоже время меняют свое
направление под воздействие вращения
Земли. Из космоса же поступает энергия
солнечного и лунного притяжения. Она
является движущей силой системой Земля-Луна
и вызывают приливы и отливы. Океан – это
не плоское, безжизненное водное пространство,
а огромная кладовая беспокойной энергии.
2.2.5. Биоэнергия.
Биото́пливо — это топливо из биологического сырья, получаемое,
как правило, в результате переработки стеблей сахарного
тростника или семян рапса,куку
Различается жидкое биотопливо (для двигателей
внутреннего сгорания, например, этанол, метанол, био
Есть два основных направления получения
топлива из биомассы: с помощью термохимических
процессов или путем биотехнологической
переработки. Опыт показывает, что наиболее
перспективна биотехнологическая переработка
органического вещества. В середине 80-х
годов в разных странах действовали промышленные
установки по производству топлива из
биомассы. Наиболее широкое распространение
получило производство спирта.
Одно из наиболее перспективных направлений
энергетического использования биомассы
– производство из неё биогаза, состоящего
на 50-80% из метана и на 20-50% из углекислоты.
Его теплотворная способность – 5-6 тыс.
ккал/м3 .
Наиболее эффективно производство биогаза
из навоза. Из одной тонны его можно получить
10-12 куб. м метана. А, например, переработка
100 млн. тонн такого отхода полеводства,
как солома злаковых культур, может дать
около 20 млрд. куб. м метана. В хлопкосеющих
районах ежегодно остается 8-9 млн. тонн
стеблей хлопчатника, из которых можно
получить до 2 млрд. куб. м метана. Для тех
же целей возможна утилизация ботвы культурных
растений , трав и другое.
|
|
агрохимическую (получение удобрений
типа нитрофоски) и экологическую. Установки
по производству биогаза размещают,
как правило, в районе крупных
городов, центров переработки
^ 3. Экологические
перспективы и проблемы использования
нетрадиционных и возобновляемых источников
энергии
В последние годы тенденция роста использования
возобновляемых источников энергии (ВИЭ)
становится достаточно явной. Проблемы
развития ВИЭ обсуждаются на самом высоком
уровне. Так на встрече на высшем уровне
на Окинаве (июнь 2000) главы восьми государств,
в том числе Президент России, обсудили
глобальные проблемы развития мирового
сообщества и среди них проблему роли
и места возобновляемых источников энергии.
Было принято решение образовать рабочую
группу для выработки рекомендаций по
значительному развертыванию рынков возобновляемой
энергетики. Практически во всех развитых
странах формируются и реализуются программы
развития ВИЭ.
Основное преимущество возобновляемых
источников энергии - неисчерпаемость
и экологическая чистота. Их использование
не изменяет энергетический баланс планеты.
Эти качества и послужили причиной бурного
развития возобновляемой энергетики за
рубежом и весьма оптимистических прогнозов
их развития в ближайшем десятилетии.
По оценке Американского общества инженеров-электриков,
если в 1980 г. доля производимой электроэнергии
на ВИЭ в мире составляла 1%, то к 2005 г. она
достигнет 5%, к 2020 - 13% и к 2060 г. - 33%. По данным
Министерства энергетики США, в этой стране
к 2020 г. объем производства электроэнергии
на базе ВИЭ может возрасти с 11 до 22%. В
странах Европейского Союза планируется
увеличение доли использования для производства
тепловой и электрической энергии с 6%
(1996) до 12% (2010). Исходная ситуация в странах
ЕС различна. И если в Дании доля использования
ВИЭ в 2000 г. достигла 10%, то Нидерланды планируют
увеличить долю ВИЭ с 3% в 2000 г. до 10% в 2020
г. Основной результат в общей картине
определяет Германия, в которой планируется
увеличить долю ВИЭ с 5,9% в 2000 г. до 12% в 2010
г. в основном за счет энергии ветра, солнца
и биомассы.
^ Можно выделить пять
основных причин, обусловивших развитие
ВИЭ:
· обеспечение энергетической безопасности;
· сохранение окружающей среды и обеспечение
экологической безопасности;
· завоевание мировых рынков ВИЭ, особенно
в развивающихся странах;
· сохранение запасов собственных энергоресурсов
для будущих поколений;
· увеличение потребления сырья для неэнергетического
использования топлива.
Масштабы роста использования ВИЭ в мире
на ближайшие 10 лет представлены в табл.
3. Чтобы ощутить масштаб цифр, укажем,
что электрическая мощность электростанций
на возобновляемых источниках энергии
(без крупных ГЭС) составит 380-390 ГВт, что
превышает мощность всех электростанций
России (215 ГВт) в 1,8 раза.
^ Таблица 3
Прогноз роста установленной
мощности оборудования возобновляемой
энергетики в мире, ГВт
Вид оборудования или технологии |
2000 г. |
2010 г. | |
Фотоэлектричество |
0,938 (0,26) |
9,2 (1,7) | |
Ветроустановки, подключенные к сети |
14 |
74 | |
Малые ГЭС |
70 |
175 | |
Электростанции на биомассе |
18 |
92 | |
Солнечные термодинамические станции |
0,2 |
10 | |
Геотермальные станции |
I |
7,97 |
20,7 |
II |
32,25 | ||
ИТОГО |
111,1 |
380,9 - 392,45 | |
Геотермальные тепловые станции и установки, ГВт |
I |
17,174 |
44,55 |
II |
69,50 | ||
Солнечные коллекторы и системы, |
ГВт |
11 |
55 |
млн. м2 |
60 |
300 |
На территории России сосредоточено
45% мировых запасов природного газа,
13% - нефти, 23% - угля, 14% - урана. Такие
запасы топливно-энергетических ресурсов
могут обеспечить потребности страны
в тепловой и электрической энергии
в течение сотен лет. Однако фактическое
их использование обусловлено
Экономический потенциал ВИЭ на территории
России, выраженный в тоннах условного
топлива (т.у.т.), составляет по видам источников:
энергия Солнца - 12,5 млн., энергия ветра
- 10 млн., тепло Земли - 115 млн., энергия биомассы
- 35 млн., энергия малых рек - 65 млн., энергия
низкопотенциальных источников тепла
- 31.5,млн., всего - 270 млн. т.у.т.
Эти источники по объему составляют примерно
30% от объема потребления топливно-энергетических
ресурсов в России, составляющего 916 млн.
т.у.т. в год, что создает благоприятные
перспективы решения энергетических,
социальных и экологических проблем в
будущем.
Заключение.
Неоспорима роль энергии в поддержании
и дальнейшем развитии цивилизации. За
время существования нашей цивилизации
много раз происходила смена традиционных
источников энергии на новые, более совершенные.
И не потому, что старый источник был исчерпан!
Тема работы «альтернативные источники
энергии» актуальна сегодня, потому, что
при существующем уровне научно–технического
прогресса энергопотребление может быть
покрыто за счет использования органических
топлив (уголь, нефть, газ), гидроэнергии
и атомной энергии на основе тепловых
нейтронов. Однако, по результатам многочисленных
исследований органическое топливо к
2020г. может удовлетворить запросы мировой
энергетики только частично. Остальная
часть энергопотребности может быть удовлетворена
за счет других источников энергии – нетрадиционных
и возобновляемых.
Данная тема «альтернативные источники
энергии» достаточно подробно освещена
в научных трудах следующих авторов: Апполонов
Ю.Е.,Миклашевич И.В.,Благородов В.Н.
Твайделл Дж., Уэйр А.
Сейчас, в начале 21-го века, начинается
новый значительный этап земной энергетики.
Появилась энергетика «щадящая», построенная
так, чтобы человек не рубил сук, на котором
он сидит, заботился об охране уже сильно
поврежденной биосферы- альтернативная
энергия. К ней относят - солнечную, геотермальную
и ветровую энергию, а также энергию биомассы,
океана и прочую.
В отличие от ископаемых топлив (уголь,нефть,газ),
нетрадиционные формы энергии не ограничены
геологически накопленными запасами.
Это означает, что их использование и потребление
не ведет к неизбежному исчерпанию запасов.
Рассмотренные в работе новые схемы преобразования
энергии можно объединить единым терминов
«экоэнергетика», под которым подразумеваются
любые методы получения чистой энергии,
не вызывающие загрязнения окружающей
среды.
Основной фактор при оценке целесообразности
использования нетрадиционных возобновляемых
источников энергии – стоимость производимой
энергии в сравнении со стоимостью энергии,
получаемой при использовании традиционных
источников. Особое значение приобретают
нетрадиционные источники для удовлетворения
локальных потребителей энергии.
Прежде всего это высокая капиталоемкость,
вызванная необходимостью создания новой
техники и технологии. Во-вторых, высокая
материалоемкость : создание мощных ПЭС
требует, к примеру, огромных количеств
металла, бетона и так далее, В-третьих,
под некоторые станции требуется значительное
отчуждение земли или морской акватории.
Кроме того, развитие использования альтернативных
источников энергии сдерживается также
нехваткой специалистов. Решение этих
проблем требует комплексного подхода
на национальном и международном уровне,
что позволит ускорить их реализацию.
На возобновляемые (альтернативные) источники
энергии приходится всего около 1 % мировой
выработки электроэнергии. Речь идет прежде
всего огеотермальных
электростанциях (ГеоТЭС), которые вырабатывают
немалую часть электроэнергии в странах
Центральной Америки, на Филиппинах, вИсландии; Исландия также являет собой
пример страны, где термальные воды широко
используются для обогрева, отопления.
Приливные
электростанции (ПЭС) пока имеются лишь в нескольких
странах — Франции, Великобритании, Кан
Солнечные
электростанции (СЭС) работают более чем в 30
странах.
В последнее время многие страны расширяют
использование ветроэнергетичес
В качестве топлива в Бразилии и других странах все чаще используют этиловый
спирт.
Перспективы использования возобновляемых
источников энергии связаны с их экологической чистотой, низкой стоимостью
эксплуатации и грядущим топливным дефицитом в традиционной энергетике.
По оценкам Европейской
комиссии к 2020
году в странах Евросоюза в индустрии возобновляемой
энергетики будет создано 2,8 миллионов
рабочих мест. Индустрия возобновляемой
энергетики будет создавать 1,1 % ВВП.
Исходя из того, что ВИЭ сегодня обеспечивают
менее 6% энергопотребления стран ЕС, необходимо
объединить усилия для увеличения этой
доли. Это, в свою очередь, создаст возможность
для экспорта энергии и улучшения экологии.
^ Список использованной
литературы.