Автор работы: Пользователь скрыл имя, 05 Декабря 2014 в 13:52, курсовая работа
При рассмотрении энергетики, как отрасли народного хозяйства, можно отследить эволюцию источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии).
К возобновляемым источникам энергии относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра и энергия волн. В отличие от ископаемых топлив эти формы энергии не ограничены геологически накопленными запасами (если атомную энергию рассматривать вместе стермоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.
Все новые схемы преобразования энергии можно объединить единым термином “ экоэнергетика ”, под которым подразумеваются любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды.
Введение
1.Поиск новых видов энергии…………………………………………………….. 2
1.1. Источники развития энергетики …………………………………………….. 4
1.2. Необходимость энергетических ресурсов…………………………………… 5
2. Альтернативные возобновляемые источники энергии……………………..… 7
2.1. Энергия ветра……………………………………………………………….…. 8
2.1.1. Аккумулирование ветровой энергии ………………………………………10
2.2. Гидроэнергия. ………………………………………………………………….11
2.3. Геотермальная энергия ………………………………………………………..12
2.3.1. Гидротермальные системы …………………………………………13
2.3.2.Горячие системы вулканического происхождения ………………..14
2.3.3. Системы с высоким тепловым потоком …………………………...14
2.4. Энергия мирового океана …………………………………………………….15
2.5.Энергия приливов и отливов. ………………………………………………...16
2.6. Энергия морских течений ……………………………………………………17
2.7. Солнечная энергия ……………………………………………………………17
3. Атомная энергия…………………………………………………………………21
4.Водородная энергетика ………………………………………………………….22
4.1. Перспективные методы производства водорода ……………………24
4.2.Применение водорода …………………………………………………25
Заключение……………………………………………………………………….. 25
Список литературы ………………………………………………………………..26
С геологической точки зрения геотермальные энергоресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.
2.3.1.Гидротермальные системы
К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование таких систем связано с наличием источника теплоты горячен или расплавленной скальной породой, расположенной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы находится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в результате ее подстилающей горячей породой. Проницаемая порода, в свою очередь, сверху покрыта непроницаемой скальной породой, образующей “ловушку” для перегретой воды. Однако наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.
В принципе для производства
электроэнергии на месторождениях с горячей
водой применяется метод, основанный на
использовании пара, образовавшегося
при испарении горячей жидкости на поверхности.
Этот метод использует то явление, что
при приближении горячей воды (находящейся
под высоким давлением) по скважинам из
бассейна к поверхности давление падает
и около 20 % жидкости вскипает и превращается
в пар. Этот пар отделяется с помощью сепаратора
от воды и направляется в турбину. Вода,
выходящая из сепаратора, может быть подвергнута
дальнейшей обработке в зависимости от
ее минерального состава. Эту воду можно
закачивать обратно в скальные породы
сразу или, если это экономически оправдано,
с предварительным извлечением из нее
минералов. Примерами геотермальных месторождений
с горячей водой являются Уайракей и Бродлендс
Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двухконтурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовавшийся в результате кипения этой жидкости, используется для привода турбины. Отработавший пар конденсируется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл. Установки, использующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75–150 °С и при единичной электрической мощности в пределах 10–100 кВт. Такие установки могут быть использованы для производства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах.
2.3.2. Горячие системы
Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся магма и непроницаемые горячие сухие породы (зоны застывшей породы вокруг магмы и покрывающие ее скальные породы). Получение геотермальной энергии непосредственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматривают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу (рис. 5). Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещиноватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагревается II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотренных ранее способов.
2.3.3. Системы с высоким тепловым потоком
Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплового потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из скважин, может достигать 100 °С.
Особая категория месторождений
этого типа находится в районах, где нормальный
тепловой поток через грунт оказывается
в ловушке из изолирующих непроницаемых
пластов глины, образовавшихся в быстро
опускающихся геосинклинальных зонах
или в областях опускания земной коры.
Температура воды, поступающей из геотермальных
месторождений в зонах геодавления , может достигать 150–180 °С, а давление у устья скважины
28–56 МПа. Суточная производительность
в расчете на одну скважину может составлять
несколько миллионов кубических метров
флюида. Геотермальные бассейны в зонахповышенного геодавления н
2.4. Энергия мирового океана
Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов – все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.
Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км 2 ) занимают моря и океаны – акватория Тихого океана составляет 180 млн. км2. Атлантического – 93 млн. км 2 , Индийского – 75 млн. км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.
Последние десятилетие характеризуется
определенными успехами в использовании
тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы
английских слов Осеа nТhеrmal Energy Conv
Три насоса потребовались из следующего расчета: один – для подачи теплой виды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.
Установка мини-ОТЕС смонтирова
Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.
Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии (рис. 6). Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом.
2.5. Энергия приливов и отливов.
Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с . Если Луна , Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (кв адратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.
Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.
Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.
Максимально возможная мощность в одном цикле прилив – отлив, т. е. от одного прилива до другого, выражается уравнением
где р – плотность воды, g – ускорение силы тяжести, S – площадь приливного бассейна, R – разность уровней при приливе.
Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые “бассейны”.
Мощность электростанций в некоторых местах могла бы составить 2–20 МВт.
Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Д иоколо Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.
Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановомпроливе, по правительство не утвердило дорогостоящий проект.
С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч . Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт вМезенском заливе на Баренцевом море.
2.6. Энергия морских течений
Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, “погруженным” в атмосферу).
Важнейшее и самое известное морское течение – Гольфстрим. Его основная часть проходит черезФлоридский пролив между полуостровом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до 800 м, а поперечное сечение 28 км 2 . Энергию Р , которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в ваттах)
где т–масса воды (кг), р –плотность воды (кг/м3), А–сечение (м 2 ), v – скорость (м/с). Подставив цифры, получим
Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от 50 крупных электростанций по 1000 МВт, Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около 10% энергии течения.
В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, к во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн з английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.