Автор работы: Пользователь скрыл имя, 27 Ноября 2012 в 10:37, курсовая работа
Основными загрязнениями сточных вод являются физиологические выделения людей и животных, отходы и отбросы, получающиеся при мытье продуктов питания, кухонной посуды, стирке белья, мытье помещений и поливке улиц, а также технологические потери, отходы и отбросы на промышленных предприятиях. Бытовые и многие производственные сточные воды содержат значительные количества органических веществ, способных быстро загнивать и служить питательной средой, обусловливающей возможность массового развития различных микроорганизмов, в том числе патогенных бактерий; некоторые производственные сточные воды содержат токсические примеси, оказывающие пагубное действие на людей, животных и рыб.
at – требуемая концентрация в осветленной воде, не менее 10 мг/л;
Kss – коэффициент использования объема зоны отстаивания, равный 0,4;
Ii – иловый индекс, равный 80 см3/г [7].
, принимаем 9 м.
Где Н1 – высота борта над слоем воды, равная 0,4м;
Н2 – высота нейтрального слоя, равная 0,3 м;
Н3 – высота слоя ила, равная 0,3 м.
Где рmud – влажность активного ила, равная 99,5%;
γmud – плотность активного ила, равная 1 г/см3.
.
Вывод: Для отделения сточной воды и активного ила принимаем 4 вторичных радиальных отстойника с диаметром отстойника = 9м, высотой = 4 м и количеством секций = 3.
4.6 Доочистка на механических фильтрах
Доочистку очищенных стоков проводим на фильтрах с плавающей загрузкой. Эффект очистки взвешенных веществ 50%, по БПК – 70%.
Исходные данные:
Суточный расход стоков Q = 6000м3/сут;
Максимальный часовой приток qw = 360м3/ч;
БПКполн в поступающей сточной воде Len = 15 мг/л;
БПКполн в очищенной сточной воде Lex = 3 мг/л;
Концентрация взвешенных веществ в поступающей воде Cen = 10 мг/л;
Концентрация взвешенных веществ в очищенной воде Cex = 5 мг/л.
Где ν ф – скорость фильтрования при нормальном режиме, равная 8 м/ч.
Np = 2. Рассчитывается скорость фильтрования воды при форсированном режиме работы:
Скорость фильтрования не должна отличаться от табличного значения более чем на 15 %.
Δ = 100(9,2 - 8)/8 = 15% - вполне допустимо.
Вывод: Для очистки стоков используем фильтр с плавающей загрузкой, что позволяет повысить скорость фильтрования, уменьшить продолжительность фильтрования и сократить затраты на очистку. Количество секций фильтров = 15 и площадь всех секций = 918 м2.
Для обеззараживания сточных вод используем бактерицидную установку УДВ – 6/6 с длиной лучей 220 – 260 нм, что губительно влияет на бактерии.
4.7 Расчет аэробного стабилизатора
Три вида отбросов: измельченные отходы, взвешенные частицы и избыточный активный ил поступают на аэробный стабилизатор, где происходит минерализация и обезвоживание осадков. После чего отходы поступают на иловые площадки для хранения.
Количество осадка с первичных отстойников:
Определяем среднесуточное количество сырого осадка по сухому веществу:
Прирост ила определяется по формуле:
Аэробный стабилизатор, имеющий длину 6 м при производительности 6 тыс. м3/сутки должен быть увеличен по емкости путем включения вставки 3 м. Таким образом, общая длина аэробного стабилизатора составят: 6+3=9м.
4.8 Расчет и подбор вспомогательного оборудования
Расчет насоса
Подбираем насос для перекачивания жидкости при 20 градусах из открытой емкости в аппарат, работающий под атмосферным давлением. Расход воды 0,1 м3/с. Геометрическая высота подъема воды 12,5 м. Длина трубопровода по линии всасывания 10 м на линии нагнетании 15 м. На линии нагнетания имеется 4 отвода по углом 90 градусов с радиусом поворота равным 6 диаметрам трубы и 2 нормальных вентиля. На всасывающем участке трубопровода установлено 2 прямоточных вентиля. Имеется 4 отвода под углом 90 градусов с радиусом поворота равным 6 диаметрам трубы.
1. Выбор трубопровода
Для всасывающего и нагнетательного трубопровода примем одинаковую скорость течения воды, равную 2 м/с: .
Тогда диаметр входного трубопровода (условный проход фланцев) в аэратор для воды равен:
;
Принимаем .
Трубопровод стальной, коррозия незначительна.
2. Определение потерь
на трение и местные
Находим критерий Рейнольдса:
; .
Критерий Рейнольдса:
;
.
Т.е. режим турбулентный. Абсолютную шероховатость трубопровода принимаем: .
Относительная шероховатость труб:
;
Далее получим:
; ;
Таким образом, в трубопроводе имеет место смешанное трение, и расчет коэффициента трения λ следует проводить по формуле:
;
.
Определим сумму коэффициентов
местных сопротивлений отдельно
для всасывающей и
Для всасывающей линии:
Сумма коэффициентов местных сопротивлений во всасывающей линии:
.
Потерянный напор во всасывающей линии находим по формуле:
;
.
Для нагнетательной линии:
Сумма коэффициентов
местных сопротивлений в
.
Потерянный напор в нагнетательной линии находим по формуле:
;
.
Общие потери напора:
;
.
3. Выбор насоса.
Находим напор насоса:
,
Где – давление в аппарате из которого перекачивается вода, ;
– давление в аппарате, в который перекачивается вода,
Выбираем центробежный насос марки Х500/25 со следующими техническими характеристиками: высота столба жидкости Н = 19м; оптимальная нагрузка Q = 0,15 м3/с; скорость вращения n = 960 об/мин; КПДном = 0,8; электродвигатель: АО 2-91-6, номинальной мощностью 55кВт, КПДдв = 0,92.
Расчет допустимой длины пролета трубопровода
,
где Р – внутреннее давление, МПа;
D – наружный диаметр трубы, мм;
Sоп – толщина стенки, мм;
φ - коэффициент прочности элемента, φ = 1 ;
At – температурный коэффициент прочности материала, At = 1;
σод – допускаемое напряжение при расчетной температуре, σод = 147 МПа.
.
где q – значение нагрузки для рабочих условий, q = 1,1.
Таким образом, допустимая длина пролета одного из трубопроводов для подачи воздуха составляет 5,96 м.
В результате проведения расчетов технологических сооружений разработан основной аппарат биологической очистки сточных вод поселка городского типа аэротенк-вытеснитель с регенератором, чертеж которого представлен в Приложении.
5. Технико–экономическая часть
В данной работе, разрабатывается проект биологических очистных сооружений для поселков городского типа производительностью 6000 м3/сут.
В ходе проектирования выполнен расчет основных технологических параметров процесса очистки. На основании технологического расчета определены размеры и конструкция аппаратов, подобрано аэрационное и насосное оборудование. В данном разделе дипломного проекта выполнен расчет производственной мощности очистных сооружений, инвестиционных затрат на их строительство и годовых эксплуатационных затрат, а также дана оценка экономической и экологической целесообразности.
5.1 Расчет производственной мощности
Производственная мощность очистных сооружений (М) определяется по основному технологическому оборудованию (аэротенку) и рассчитывается по формуле:
,
Где Q – производительность аэротенка по поступающей сточной воде (Q = 6000 м3/сут);
Тэф – эффективное время работы оборудования, дни.
Очистные сооружения работают непрерывно в течение календарного года, поэтому Тэф = 365 дней.
М = 6000*365 = 2190000 м3 в год.
В процессе очистки сточной воды образуются:
- твердые бытовые отходы, задержанные решетками блока механической очистки (отходы 4 класса опасности);
- песок и минеральные частицы, крупностью до 2 мм, уловленные песколовкой (отходы 4 класса опасности);
- избыточный активный ил (отходы 4 класса опасности).
Количество ежегодно образующихся отходов (m) определяем по формуле:
где ρ – плотность отходов, г/см3;
V – суточный объем образующихся отходов, л/сут (расчет выполнен в разделе «Материальный баланс»).
Твердые бытовые отходы от решеток образуются в количестве 720 л/сутки. Плотность отходов составляет 0,75 г/см3, влажность W = 60%.
Песок на песколовках улавливается в количестве 660 л/сутки. Плотность песка составляет 1,8 г/см3, влажность W = 60%.
Периодически твердые
отходы и песок из песколовок вывозятся
на полигон твердых бытовых
Избыточный активный ил улавливается в количестве 4308 л/сутки. Плотность ила 1 г/см3.
Минерализованный и обезвоженный ил вывозится в мешках на специально отведенные площадки.
Таблица 5.1. Количество образующихся отходов
Отходы |
Суточное количество, л/сут |
Годовое количество отходов | |
м3/год |
т/год | ||
Твердые бытовые отходы, снимаемые с решеток W = 60%, ρ = 0,75г/см3 |
720,00 |
262,8 |
197,00 |
Песок, улавливаемый песколовками W = 60%, ρ = 1,8 г/см3 |
660,00 |
240,9 |
433,62 |
Избыточный ил ρ = 1 г/см3 |
4308,00 |
1572,42 |
1572,42 |