Декларация промышленной безопасности

Автор работы: Пользователь скрыл имя, 29 Января 2014 в 08:57, реферат

Описание работы

Обеспечение промышленной безопасности, или управление риском, - системный подход к принятию политических решений, процедур и практических мер в решении задач предупреждения или уменьшения опасности промышленных аварий для жизни человека, заболеваний или травм, ущерба имуществу и окружающей среде.
Опасность - источник потенциального ущерба, вреда или ситуация с возможностью нанесения ущерба.

Содержание работы

Декларация промышленной безопасности…………………..……..... 2 – 7 стр.

Пища, как экологический фактор………………………..………….. 8 – 13 стр.

Энергетика экосистемы…………………………..………………….. 14 – 16 стр.
Продуктивность экосистем……………………………………… 16 – 19 стр.

Приложение ………………………………………………………………………. 20– 21 стр.

Список источников и литературы …………………………………………………. 22 стр.

Файлы: 1 файл

Декларация промышленной безопасности.docx

— 273.99 Кб (Скачать файл)

   Существует несколько достаточно широко распространенных методов для внедрения чужеродной ДНК в геном растения.

   Самый распространенный способ внедрения чужих генов в наследственный аппарат растений – с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.

   Нужный ген "вклеивают" с помощью рестриктаз в кольцевую молекулу ДНК бактерии, так называемую плазмиду. Эта же плазмида несет ген устойчивости к антибиотику. Лишь очень небольшая доля таких операций оказывается успешной. Те бактериальные клетки, которые примут в свой генетический аппарат "прооперированные" плазмиды, получат кроме нового полезного гена устойчивость к антибиотику. Их легко будет выявить, полив культуру бактерий антибиотиком, – все прочие клетки погибнут, а удачно получившие нужную плазмиду размножатся. Теперь этими бактериями заражают клетки, взятые, например, из листа растения. Опять приходится провести отбор на устойчивость к антибиотику: выживут лишь те клетки, которые приобрели эту устойчивость от плазмид агробактерии, а значит, получили и нужный ген.

   Генетически модифицированные продукты стали одним из достижений биологии ХХ в. Но вопрос о безопасности таких продуктов для человека до сих пор остается открытым. Проблема генетически - модифицированных продуктов актуальна, поскольку в ней экономические интересы многих стран приходят в противоречие с основными правами человека.

   Большинство людей не знают о генетически - модифицированных продуктах и возможных последствиях их использования. Раньше люди боялись стихийных бедствий, войн, теперь становится опасно есть мясо и овощи. Чем выше технология, тем выше риск. Людям следует постоянно помнить о том, что всякая технология имеет очевидные плюсы и неизвестные минусы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Энергетика  экосистемы

 

   Экосисте́ма, или экологи́ческая систе́ма (от др.-греч. οἶκος — жилище, местопребывание и σύστημα — система) — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.

   Пример экосистемы — пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворенных газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма.

   Другой пример экологической системы — лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов. Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.

   Существование любой системы немыслимо без связи. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

   Прямой связью, называют такую связь, при которой один элемент (А) действует на другой (Б) без ответной реакции. Пример: древесный ярус (хвоя) действует на травянистые растения.

   Обратной связью, элемент (Б) действует на элемент (А). Положительная обратная связь ведет к усилению процесса в одном направлении. Пример: заболачивание после вырубки лесов.

   Отрицательная обратная связь предполагает в ответ на усиления действия элемента (А) увеличение противодействия элемента (Б). Пример – иммунитет человека.

   Любая система характеризуется эмерджентностью (универсальным свойством) – свойство, присущее системе в целом, но не характерная элементам, ее составляющим. 

   Экологи́ческая ни́ша — место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды. Термин введен в 1914 году Дж. Гриннеллом и в 1927 году Чарльзом Элтоном.

   Экологическая ниша представляет собой сумму факторов существования данного вида, основным из которых является его место в пищевой цепочке. По Хатчинсону экологическая ниша может быть:

 

  • фундаментальной — определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;
  • реализованной — свойства которой обусловлены конкурирующими видами.

 

   Это различие подчеркивает, что межвидовая конкуренция приводит к снижению плодовитости и жизнеспособности и что в фундаментальной экологической нише может быть такая часть, занимая которую вид в результате межвидовой конкуренции не в состоянии больше жить и успешно размножаться. Эта часть фундаментальной ниши вида отсутствует в его реализованной нише (Бигон и др., 1989). Таким образом, реализованная ниша всегда входит в состав фундаментальной или равна ей.

 

   Энтальпия  величина, характеризующая меру  упорядоченности системы:

 
 

Энтальпия (H) – порядок 
Энтропия (S*T) – беспорядочность (негэнтропия) 

Энергия Гиббса 

Состояние в системе  характеризуется состоянием энергии  Гиббса.

 

Самопроизвольное  протекание процессов в экосистему невозможно.

 

Самопроизвольное  протекание процессов возможно.

 

Система находится  в состоянии равновесия. 
 
Продуктивность экосистем

 

   При анализе продуктивности и потоков вещества и энергии в экосистемах выделяют понятия биомасса и урожай на корню. Под урожаем на корню понимается масса тел всех организмов на единице площади суши или воды, а под биомассой — масса этих же организмов в пересчёте на энергию (например, в джоулях) или в пересчёте на сухое органическое вещество (например, в тоннах на гектар).

   К биомассе относят тела организмов целиком, включая и витализированные омертвевшие части и не только (у растений, к примеру, кора и ксилема, ногти и ороговевшие части у животных). Биомасса превращается в некромассу только тогда, когда отмирает часть организма (отделяется от него) или весь организм. Часто зафиксированные в биомассе вещества являются «мёртвым капиталом», особенно это выражено у растений: вещества ксилеммы могут сотнями лет не поступать в круговорот, служа только опорой растения.

   Под первичной продукцией сообщества (или первичной биологической продукцией) понимается образование биомассы (более точно — синтез пластических веществ) продуцентами без исключения энергии, затраченной на дыхание за единицу времени на единицу площади (например, в сутки на гектар).

   Первичную продукцию сообщества разделяют на валовую первичную продукцию, то есть всю продукцию фотосинтеза без затрат на дыхание, и чистую первичную продукцию, являющуюся разницей между валовой первичной продукцией и затратами на дыхание. Иногда её ещё называют чистой ассимиляцией или наблюдаемым фотосинтезом).

   Чистая продуктивость сообщества — скорость накопления органического вещества, не потребляемого гетеротрофами (а затем и редуцентами). Обычно вычисляется за вегетационный период либо за год.

   Таким образом, это часть продукции, которая не может быть переработана самой экосистемой. В более зрелых экосистемах значение чистой продуктивости сообщества стремится к нулю (см. концепцию климаксных сообществ).

   Вторичная продуктивность сообщества — скорость накопления энергии на уровне консументов. Вторичную продукцию не подразделяют на валовую и чистую, так как консументы только потребляют энергию, усвоенную продуцентами, часть её не ассимилируется, часть идёт на дыхание, а остаток идёт в биомассу, поэтому более корректно называть её вторичной ассимиляцией.

  

Схема

распределения потоков  вещества и энергии среди продуцентов  и консументов 

(по Ю. Одуму, 1971)

 

   Распределение энергии и вещества в экосистеме может быть представлено в виде системы уравнений. Если продукцию продуцентов представить как P1, то продукция консументов первого порядка будет выглядеть следующим образом:

 

P2=P1-R2

 

где R2 — затраты на дыхание, теплоотдача и неассимилированная энергия.

 

   Следующие консументы (второго порядка) переработают биомассу консументов первого порядка

 

P3=P2-R3 

   Таким образом, чем больше в экосистеме потребителей (консументов), тем более полно перерабатывается энергия, первоначально зафиксированная продуцентами в пластических веществах. В климаксных сообществах, где разнообразие для данного региона обычно максимально, такая схема переработки энергии позволяет сообществам устойчиво функционировать на протяжении длительного времени.

 

   Экологическая пирамида — графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников, видов, питающихся другими хищниками) в экосистеме. Эффект пирамид в виде графических моделей разработан в 1927 году Ч. Элтоном.

   Данное явление было изучено Ч. Элтоном и названо пирамидой чисел или пирамидой Элтона. Различают пирамиду численности (особей), пирамиду биомассы и пирамиду энергии.

 

Выражается:

 

  • в единицах массы (пирамида биомасс),
  • в числе особей (пирамида чисел Элтона)
  • в заключенной в особях энергии (пирамида энергий).

 

   Основание пирамиды образуют растения-продуценты. Над ними располагаются фитофаги. Следующее звено представлено консументами второго порядка. И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи. И поскольку на верхние этажи пирамиды энергия доходит в очень малых количествах, цепь редко состоит более чем из 5—6 звеньев.

   Ю. Одум сделал расчеты потока энергии от звена к звену в упрощенной теоретической экосистеме, сведя ее к одной примитивной цепи, функционирующей в течение года. Он рассуждал следующим образом. Допустим, имеется посев люцерны на площади в 4 га. На этом поле кормятся телята (предполагается, что они едят только люцерну), а телятиной питается 12-летний мальчик. Результаты расчетов, представленные в виде трех пирамид — численности, биомассы и энергии, свидетельствуют, что люцерна использует всего 0,24 % всей падающей на поле солнечной энергии, из которой 8 % приходится на телят; 0,7 % энергии, накопленной телятами, расходуется на развитие и рост ребенка с 12 до 13 лет. Несмотря на то что рассматриваемая схема искусственна, она все же дает четкое представление о масштабах снижения коэффициента полезного действия по мере перехода от основного звена в пирамиде к ее вершине: из всей солнечной энергии, падающей на 4 га люцернового поля, лишь немногим больше миллионной части ее хватает на пропитание мальчика в течение года.

   Из трех типов экологических пирамид пирамида энергии дает наиболее полное представление о функциональной организованности сообществ, потому что количество и масса организмов зависят не от количества фиксированной энергии в данный момент на предыдущем уровне, а от скорости продуцирования пищи. Пирамида энергии отражает картину скоростей прохождения массы пищи через пищевую цепь.

   Правило пирамиды чисел универсально и объективно отражает круговорот веществ и поток энергии в биосфере. В масштабе всей биосферы это правило никогда не нарушается.

   Правда, на незначительных участках могут быть некоторые отклонения от него. Это имеет место при вспышках массового размножения вредителей, когда полностью уничтожается растительность и на какой-то ограниченной территории временно разрушается цепь питания. В данном случае в движение приходит все сообщество животных и растений, связанных между собой пищевыми отношениями.

 

 

Экологическая пирамида 

Primary producer — продуценты (растения),

Primary consumer — консументы первого порядка (травоядные),

Secondary consumer — консументы второго порядка (хищники),

Информация о работе Декларация промышленной безопасности