Автор работы: Пользователь скрыл имя, 13 Мая 2015 в 14:35, контрольная работа
Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии.
ВСТУП…………………………………………………………………………………3
1 ПРИЧИНИ УТВОРЕННЯ ФОТОХІМІЧНОГО СМОГУ…………………………4
2 МЕХАНІЗМ УТВОРЕННЯ ФОТОХІМІЧНОГО СМОГУ……………………...10
ВИСНОВКИ……………………………………………………………………….…15
ПЕРЕЛІК ПОСИЛАНЬ……………………………………………………………...16
ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД
ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ
ЗАОЧНИЙ ФАКУЛЬТЕТ
КАФЕДРА ПРИКЛАДНОЇ ЕКОЛОГІЇ ТА ОХОРОНИ
НАВКОЛИШНЬОГО СЕРЕДОВИЩА
КОНТРОЛЬНА РОБОТА
з дисципліни
«Фізико-хімічні перетворення
забруднюючих речовин в довкіллі»
на тему:
«Фотохімічний смог, аналіз причин та механізму його утворення»
Виконала,
студентка групи ЕПзпр-12 А. І. Тарабан
(підпис, дата) (ініціали, прізвище)
Перевірив
(посада) (підпис, дата) (ініціали, прізвище)
Донецьк, 2014
РЕФЕРАТ
Контрольна робота: 16 с., 8 посилань.
Мета роботи – аналіз причин та механізму утворення фотохімічного смогу.
В роботі проаналізовано джерела утворення фотохімічного смогу, причини його утворення. Розглянуто вплив фотохімічного смогу на навколишнє середовище та здоров’я людей.
ФОТОХІМІЧНИЙ СМОГ, ЗАБРУДНЕННЯ АТМОСФЕРИ, ПОГОДНІ УМОВИ, ПАЛИВО, ВУГЛЕЦЬ, ОКСИДИ АЗОТУ, ЧАДНИЙ ГАЗ, БІОСФЕРА,
ГАЗИ АВТОМОБІЛЬНОГО ТРАНСПОРТУ
ЗМІСТ
ВСТУП…………………………………………………………………
1 ПРИЧИНИ УТВОРЕННЯ
2 МЕХАНІЗМ УТВОРЕННЯ
ВИСНОВКИ…………………………………………………………
ПЕРЕЛІК ПОСИЛАНЬ…………………………………………………………
ВСТУП
Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается.
1 ПРИЧИНИ УТВОРЕННЯ
Смог впервые был отмечен в 1944 г. в городе Лос-Анджелесе. Город находится во впадине, окруженной горами и морем, что приводит к застаиванию воздушных масс, накоплению загрязнителей атмосферы и в результате возникновению благоприятных условий для образования смога. Он возникает под действием солнечного света и ясной безветренной погоды, которая чаще всего стоит с июня по сентябрь, реже - зимой. В результате фотохимических реакций смог образуется при определенных условиях: если в атмосфере высока концентрация оксидов азота, углеводородов и других загрязнителей, при интенсивной солнечной радиации и безветрии, а также в случаях очень слабого обмена воздуха в приземном слое при мощной повышенной инверсии в течение не менее суток. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. При соединении атомарного кислорода с молекулярным кислородом возникает озон. Он, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота, в свою очередь, - в диоксид, но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи, образуя осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге в атмосфере постепенно накапливается озон. В ночное время этот процесс прекращается. Озон, в свою очередь, вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые образуют характерные для фотохимического тумана - оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью: приводят к возникновению дымчатых туманов с частицами пыли, выхлопными газами, дымом, копотью.
Смог - аэрозоль, состоящий из дыма, тумана и пыли. Английское слово «smog» - производное от «smoke» - дым и «fog» - туман.
Возникновению смога способствуют такие условия погоды, когда создается застойное состояние воздуха, при котором улицы и площади города практически не вентилируются.
Распределение загрязнений в воздухе в большой степени зависит от погодных и климатических явлений. Ветры увеличивают скорость рассеяния и перемешивания, а воздушные потоки, направленные от земли, выносят загрязнения в верхние слои атмосферы. Однако могут возникнуть условия, при которых атмосферные слои становятся очень стабильными. Это, в частности, бывает при антициклонах (областях с высоким атмосферным давлением), при штилевой погоде вообще и при выхолаживании самого нижнего слоя воздуха, когда в верхних слоях на некоторой высоте воздух оказывается теплее, чем в нижних (то есть наблюдается температурная инверсия). Тогда загрязнения, вместо того чтобы перемещаться в верхние слои атмосферы, остаются вблизи поверхности земли. Это приводит к тому, что более холодный воздух располагается ниже более теплого, и не может подняться вверх и рассеяться в атмосфере. Под «крышей» из теплого воздуха загрязнения накапливаются в таких больших количествах, что становятся опасными для здоровья. Города, расположенные в понижениях местности, отличаются повышенной повторяемостью температурных инверсий, и, следовательно, при высоком уровне индустриального загрязнения воздуха они предрасположены к образованию смога. Выделяют три типа смога:
- ледяной смог (аляскинского типа);
- влажный смог (лондонского типа);
- сухой, или фотохимический смог (лос-анджелесского типа).
Ледяной смог (аляскинского типа) - характерен для высоких широт в зимнее время при температуре -30…-35°С и полном безветрии. Воздушный пар, находящийся в атмосфере замерзает, на эти кристаллы абсорбируется сажа, различные газы, парогазовые смеси, сернистый ангидрид. Такое облако висит над населенным пунктом несколько дней [1].
Наиболее изучен влажный смог - сочетание тумана с примесью дыма и газовых отходов производства. Лондонский смог формируется при влажности воздуха около 100%, температуре 0С, длительной штилевой погоде и высокой концентрации продуктов сгорания твёрдого и жидкого топлива. Наблюдается чаще в осенне-зимний период, характерен для умеренных широт с влажным морским климатом.
Загрязнение воздуха городов происходит в основном в результате процессов сгорания. Топливо обычно состоит из углеводородов, за исключением в основном экзотических примесей, таких, как ракетная промышленность, где иногда используются азот, алюминий и даже бериллий. Сжигание топлива первоначально кажется безвредным, но оно может привести к образованию ряда загрязняющих соединений углерода.
Топливо обычно состоит из углеводородов и обычный процесс сгорания его идет согласно уравнению :
4CH + 5O2(г) = 4CO2(г) + 2H2O(г)
Топливо + кислород = диоксид углерода + вода.
Этот процесс не является особо опасным, поскольку ни CO2, ни вода не являются токсичными веществами. Однако, когда в процессе сжигания имеет место недостаток кислорода, что может случиться внутри двигателя или котла, тогда могут образоваться токсичные компоненты. Уравнение можно записать в виде:
4CH + 3O2(г) = 4CO2(г) + 2H2O(г)
Топливо + кислород = монооксид углерода + вода.
Здесь образуется оксид углерода (CO2), ядовитый газ. Если кислорода меньше, можно получить углерод (т.е. сажу):
4CH + O2(г) = 4C(г) + 2H2O(г)
Топливо + кислород = сажа + вода
При низких температурах и в случаях относительно небольшого количества О2 реакции пиролиза (т.е. реакции, когда разрушение происходит в результате нагревания) могут вызвать изменения в расположении атомов, приводящие к образованию полициклических ароматических углеводородов в процессе сжигания. Наиболее печально известен - бензапирен, соединение, вызывающее рак. Таким образом, не смотря на то, что сжигание топлива первоначально кажется безвредным, оно может привести к образованию ряда загрязняющих соединений углерода. Кроме того, загрязнение воздуха могут вызвать примеси, входящие в состав топлива. Наиболее распространенной примесью в ископаемом топливе является сера (S), частично представленная в виде минерала пирита - FeS2. В некоторых углях может содержатся до 6% серы, которая превращается при сжигании в SО2:
4FeS2(тв) +11О2 = 8О2(г) + 2Fe2O3.
В топливе присутствуют и другие примеси, но сера всегда считалась наиболее типичным промышленным загрязнителем воздуха. Сажа, СO2 и SO2 являются первичными загрязнителями. Диоксид серы хорошо растворим и поэтому может растворятся в атмосферном воздухе, которое конденсирует вокруг частиц, например, дыма:
SO2(г) + H2O(ж) = H+ (водн) + HSO3- (водн)
Следы металлов - загрязнителей железа (Fe) или марганца (Mn) катализируют переход растворенного SO2 в H2SO4:
2HSO3- (водн) + O2(водн) = 2H+(водн) + 2SO22- (водн)
Серная кислота обладает большим сродством к воде, поэтому образовавшаяся капелька дополнительно адсорбирует воду. Капельки постоянно растут и «туман-убийца», влажный смог, сгущается, достигая очень низких значений pH. Переход от угля к углеводородным топливам уменьшил опасность загрязнения воздуха частицами сажи [2]. Однако появились новые виды загрязнения, как первичного, так и вторичного, возникающего в результате реакций первичных загрязнителей с несгоревшим топливом и кислородом воздуха. Химические реакции, приводящие к образованию вторичных загрязнителей, наиболее эффективно протекают при солнечном свете, поэтому возникающее загрязнение воздуха получило название фотохимического смога. Он был впервые отмечен в Лос-Анджелесе (США) в годы Второй мировой войны. Появление фотохимического смога связывают с бурным развитием автомобильного транспорта. Исходные вещества, из которых формируется фотохимический смог, входят в состав автомобильных выхлопных газов, присутствующих в воздухе в больших количествах В двигателях внутреннего сгорания из-за непосредственного соединения азота с кислородом образуется монооксид азота. Присутствие озона - наиболее характерный признак фотохимического смога. Он не образуется при сгорании топлива, а является вторичным загрязнителем. В дневные часы озон медленно реагирует с NO2, образуя радикал NO3, который в свою очередь вступает в дальнейшие реакции с NO и NO2. Одной из конечных продуктов этих реакций является N2O5. Если в атмосфере имеется водяной пар, то N2O5 может вступить в реакцию с водяным паром и продуктом этой реакции является азотная кислота - HNO3.
Помимо всех вышеперечисленных превращений, мы не учли влияние углеводородов, а ведь именно их присутствие в тропосфере вызывает ухудшение видимости и в результате их частичного разрушения образуются многие вредные вещества, среди которых: ПАН (пероксиацетилнитрат), альдегиды, окись углерода (угарный газ), углекислый газ, карбоновые кислоты, кетоны, окислы олефина, парафины и др [3].
2 МЕХАНІЗМ УТВОРЕННЯ
Смог наблюдается обычно при слабой турбулентности (завихрение воздушных потоков) воздуха, и следовательно, при устойчивом распределении температуры воздуха по высоте, особенно при инверсиях температуры, при слабом ветре или штиле.
Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсия температуры встречаются и у земной поверхности (приземные инверсии температуры.), и в свободной атмосфере. Приземные инверсия температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных инверсия температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные инверсия температуры в Восточной Сибири и в Антарктиде.
В тропосфере, выше приземного слоя, инверсия температуры чаще образуются в антициклонах благодаря оседанию воздуха, сопровождающемуся его сжатием, а следовательно - нагреванием (инверсии оседания). В зонах фронтов атмосферных инверсия температуры создаются вследствие натекания тёплого воздуха на нижерасположенный холодный. В верхних слоях атмосферы (стратосфере, мезосфере, термосфере) инверсия температуры возникают из-за сильного поглощения солнечной радиации. Так, на высотах от 20-30 до 50-60 км расположена инверсия температуры, связанная с поглощением ультрафиолетового излучения Солнца озоном. У основания этого слоя температура равна от - 50 до - 70°C, у его верхней границы она поднимается до - 10 … + 10 °С. Мощная инверсия температуры, начинающаяся на высоте 80-90 км и простирающаяся на сотни км вверх, также обусловлена поглощением солнечной радиации.
Инверсии температуры являются задерживающими слоями в атмосфере; они препятствуют развитию вертикальных движений воздуха, вследствие чего под ними накапливаются водяной пар, пыль, ядра конденсации. Это благоприятствует образованию слоев дымки, тумана, облаков. Вследствие аномальной рефракции света в инверсия температуры иногда возникают миражи. В инверсии температуры образуются также атмосферные волноводы, благоприятствующие дальнему распространению радиоволн.
Атмосферный волновод, слой воздуха, непосредственно примыкающий к поверхности Земли или приподнятый над ней, который отклоняет распространяющиеся в нём радиоволны к поверхности Земли. При определённых метеорологических условиях, когда температура убывает с высотой медленнее, а влажность воздуха быстрее, чем при нормальных условиях, волна, вышедшая под небольшим углом к горизонту, на некоторой высоте испытывает полное отражение, отклоняется обратно к земной поверхности и отражается от неё. Этот процесс может повторяться многократно, в результате чего радиоволны распространяются вдоль поверхности Земли на большие расстояния без заметного ослабления (рис.). Такой способ распространения радиоволн в атмосфере называется волноводным, он напоминает распространение радиоволн в радиоволноводах. В атмосферных волноводах могут распространяться волны, для которых длина волны l меньше некоторого критического значения l кр (обычно l кр ~ 50-100 V), т. е. дециметровые, сантиметровые и более короткие волны.
Информация о работе Фотохімічний смог, аналіз причин та механізму його утворення