Геохимическая роль и основные биогеохимические функции живого вещества

Автор работы: Пользователь скрыл имя, 04 Ноября 2015 в 20:32, реферат

Описание работы

Введение понятия живого вещества позволило оценить совокупные результаты деятельности живых организмов и оценить их роль как наиболее активную по сравнению с действиями всех других природных факторов, действующих на поверхности нашей планеты. В результате стало ясно, что жизнь отнюдь не пассивно приспосабливается к существующей среде, она её активно изменяет и создаёт совершенно новую среду, с качественно иными характеристиками, чем те, которые должны были бы существовать на Земле в её отсутствие.
Этому понятию и связанному с ним перевороту в научном сознании мы обязаны В.И. Вернадскому.

Файлы: 1 файл

ГЕОХИМИЧЕСКАЯ РОЛЬ И ОСНОВНЫЕ.doc

— 131.50 Кб (Скачать файл)

Слабые – 2,4 – 4,0

Умеренные – 4,0 – 25

Интенсивные – 25 – 400 и более.

Деконцентраторы:

Слабые – 0,4 – 0,25

Умеренные – 0,25 – 0,04

Интенсивные – 0,04 – 0,0025 и менее

Дополнительный параметр – ОСОР (относительное содержание в органах растений). Это отношение содержания в данном органе относительно эталонного (принимается старые ветви, древесина, корни).

Состав организмов и отдельных органов может быть подвержен сезонным колебаниям. Так, к осени в листве деревьев в 2-3 раза увеличивается содержание Cu, Co, Ni, Si, Ca, Fe. В травах содержания K и Р максимальны весной, затем уменьшаются. Наибольшая изменчивость характерна для молодых растущих органов. С возрастом в целом увеличивается зольность растений.

Есть концентраторы и деконцентраторы и среди животных. Характерно обогащение моллюсков Ca, ракообразных и пауков – Cu, и т.д. В целом для животных в сравнении с растениями характерны высокие содержания Р. Способность животных к концентрации и деконцентрации отдельных химических элементов ещё более разнообразна, чем для растений, что определяется большим видовым разнообразием (одних лишь насекомых – более миллиона видов).

Накапливая определённые виды химических элементов, растения выступают как биогеохимические барьеры. Но возможности накопления ограничены. Существует физиологический барьер поглощения, с достижением которого наступает предел насыщения организма данным элементом, и растение прекращает поглощать его из окружающей среды.

Высокое содержание элементов в среде может также вызывать изменения в физиологии и морфологии растений, закрепляющиеся наследственно (естественный отбор на биогеохимической основе).

Для каждого вида характерно оптимальное содержание тех или иных элементов в ландшафте, обуславливающее наиболее благоприятные условия для его развития. При усреднении на ландшафт в целом, те элементы, добавление подвижных форм которых в ландшафт будет увеличивать биомассу, называются дефицитными. Если наоборот, увеличению биомассы будет способствовать удаление части данного элемента из ландшафта, элемент рассматривается как избыточный. Одни и те же элементы в одном ландшафте могут быть избыточными, в другом – дефицитными. Резкий избыток или дефицит тех или иных элементов (J, F, Cu и др.) может приводить к заболеваниям растений, животных и человека. Такие заболевания названы А.П. Виноградовым биогеохимическими эндемиями, а территории с соответствующей биогеохимической спецификой – биогеохимическими провинциями.

2. Выделение  веществ в окружающую среду  в результате жизнедеятельности.

Растения обогащают атмосферу кислородом (за счёт уменьшения содержания СО2). Они же выделяют в окружающую атмосферу вещества, защищающие их от определённых микроорганизмов и животных (фитонциды).

С выделяемой в процессе жизнедеятельности водой растения выводят соединения различных металлов и других элементов (Mg, Ca, U, Hg, P и т.д.). Эти соединения смываются с листьев дождевыми водами. В результате содержания многих металлов в листьях после дождя уменьшаются в несколько раз, а минерализация дождевой воды возрастает.

Ещё более значительна и разнообразна выделительная деятельность животных.

3. Разделение  изотопов химических элементов.

Так, растения при фотосинтезе предпочтительнее используют изотоп 13С, в результате чего его отношение к 14С оказывается иным, чем у вещества, не проходившего через биогенную стадию. Сульфатные бактерии изменяют соотношение изотопов серы – и т.д. среди всех химических процессов только биохимические способны существенно влиять на изменение соотношений изотопов.

4. Минерализация (разложение) органических веществ.

Частично осуществляется и в процессе жизнедеятельности (обмена веществ с окружающей средой). Но в целом масштабы синтеза органических веществ растениями значительно превосходят разложение, и даже жизнедеятельность животных этот баланс принципиально не изменяет.

Основную роль в разложении органических веществ (растительных и животных останков) играют микроорганизмы. Основной итог – образование за счёт белков, жиров, углеводов и др. органических веществ (вплоть до смол, воска, хитина и др.) на СО2, Н2О, СаСО3, Na2SO4 и др. Часть органических веществ при этом усваивается микроорганизмами и синтезируются новые, но основная доля минерализуется. При этом высвобождается энергия в двух видах: тепловой и химической. Химическая работа может выражаться в растворении, гидролизе и др. процессах, идущих благодаря действию веществ, продуцируемых бактериями. При этом поддерживается неравновесность состояния в ландшафтах (например, одновременное обогащение речных вод в гумидном климате свободным кислородом и гумусовыми кислотами). В результате ландшафт сохраняется как неравновесная, но стационарная система. Это обусловлено тем, что Л. как система непрерывно получает свободную энергию в количестве, компенсирующем её снижение в системе. Значительная её часть поступает в результате жизнедеятельности микроорганизмов.

5. Биогенное  минералообразование.

При разложении тел растений и животных высвобождаются минеральные вещества, входившие в состав клеточных образований – скелета, раковин, панцирей и др. Они поступают в почвы и илы, где большая их часть теряет органоморфную структуру, обогащая в целом илы и почвы соответствующим минеральным веществом. Таков источник органогенного кальцита, опала (переходящего с потерей воды в халцедон и кварц), апатита и др.

Другие способы биогенного минералообразования – вне тел организмов, в связи с их жизнедеятельностью, а также в результате химических процессов в разлагающихся органических остатках. Последний способ реализуется, по данным Полынова, при биогенном генезисе глинистых минералов (разложение тканей лишайников, извлекавших из скальных пород SiO2 и Al2O3). Существование этого механизма подтверждено исследованиями М.А. Глазовской. Причём для больших высот, где скалы уже лишены лишайников, он всё равно действует – уже благодаря микроорганизмам. Аналогичный механизм предполагается М.А. Глазовской для минерализации растительного опада (устанавливается по большему сходству химизма мелкозёмной фракции почв с неразложившимся растительным опадом, чем с крупнообломочными фракциями тех же почв).

7. Изменение  химического состава поверхностных  и грунтовых вод в результате разложения органических веществ.

В условиях влажного климата значительная часть растворённых веществ поступает в воды ландшафта за счёт деятельности организмов в областях, питающих водоносный горизонт. Ведущую роль играет разложение органических остатков. В результате вода обогащается СО2, НСО3-, Са, Mg, P, S, Na, гумусовыми веществами. Состав вод в таких случаях в наибольшей мере определяется биогенным фактором, и слабо зависит от геологического строения района. Т.о., почвы являются «фабрикой», в которой формируется химический состав поверхностных и грунтовых вод гумидных ландшафтов (Б.Б. Полынов).

Иная картина в сухом климате, где биомасса мала, и ведущая роль в формировании состава вод принадлежит уже чисто физико-химическим процессам (растворению солей коры выветривания и горных пород).

В целом влияние живого вещества на формирование химического состава вод зависит от количества живого вещества и от интенсивности разложения органических остатков (на последнее влияет и химизм среды).

В кислородных водах процесс разложения органических веществ идёт наиболее полно – до разложения на Н2О, СО2 и солей различных кислот.

В анаэробных условиях разложение тоже происходит, но медленнее. Здесь необходимый для окисления кислород микроорганизмы извлекают из различных минеральных соединений (NaNO3, Fe2O3, Na2SO4…), в результате чего другие элементы этих соединений (Fe, S, N и другие) восстанавливаются. Пример – окисление углеводов за счёт восстановления серы:

C6H12O6 + Na2SO4 → CO2 + Na2CO3 + H2S + H2O

Результат – обогащение вод CO2 и H2O, создание восстановительной среды. Другие виды микроорганизмов продуцируют метан, водород и т.д.

Таким образом, газовый и ионный состав вод ландшафта во многом обязан деятельности организмов, населяющих непосредственно водоём или почву, так и области формирования вод, питающих данный водоём или почву.

На биогенное формирование состава вод существенно влияет и фактор дефицитности элементов. Растворимые формы дефицитных элементов активно поглощаются растениями, поэтому их содержание в почвенных водах будет незначительно (достаточно часто – для К и Р).

Конечно, и в гумидном климате на химический состав вод влияют и чисто физико-химические свойства веществ. Например, кремнезёма в продуктах разложения растений много, но он слабо растворим, и содержание его в водах незначительно. Калий активно связывается в коллоидах, поэтому его содержание в водах ниже, чем у натрия, несмотря на близкий кларк.

8. Воздействие  разложения органических веществ  на состав атмосферы.

Существенно на уровне почвенного и грунтового воздуха, в небольшой мере – на уровне приземных слоёв атмосферы. Обогащение СО2 и Н2О, иногда метаном (СН4) и другими газами. Для конкретных ландшафтов характерны свои специфические особенности. В целом по влиянию на состав атмосферы этот фактор, в сравнении с влиянием процессов жизнедеятельности, незначителен.

Здесь мы подходим к ещё одной важной биогеохимической функции живого вещества. Это –

9. Почвообразование.

Особенности биогеохимии педосферы, роль живых организмов в процессе образования и функционирования почв, а также биогеохимические процессы, связанные с образованием «подводных почв» - илов и кор выветривания, а также некоторые черты геохимии ландшафтов мы рассмотрим в следующей лекции.

 


Информация о работе Геохимическая роль и основные биогеохимические функции живого вещества