Автор работы: Пользователь скрыл имя, 25 Декабря 2013 в 16:37, курсовая работа
Геохимические барьеры это зоны резкого уменьшения миграционной способности каких-либо химических элементов; процесс сопровождается их осаждением из раствора и приводит к возникновению их повышенной концентрации, в том числе промышленных месторождений. В зависимости от факторов рудоотложения различают: физико-химические, механические, биогеохимические барьеры. Геохимические барьеры играют важную роль в экзогенных процессах рудообразования.
Введение…………………………………………………………………...…...3-4
Глава 1. Общие положения ………………………………………………....5-7
Глава 2. Виды геохимических барьеров…………………………………..…8-12
Глава 3. Техногенные геохимические барьеры и защита окружающей среды…………………………………………………………………..…...…12-18
Итоги………………………………………..…………………………………..32
Список использованных источников информации. ………………………33
Приложения. …………………………………………………………….….34-40
Сероводородные (сульфидные) барьеры (В)
Эти барьеры возникают там, где кислородные или глеевые воды встречают на своём пути сероводородную обстановку. Естественно, если в сероводородную среду проникают сероводородные воды, никакого барьера не возникает. Поэтому символы, соответствующие барьерам с индексами В9-В12,выделены курсивом – эти барьеры запрещены. Сероводородные обстановки в зоне гипергенеза встречаются редко, так что и сероводородные барьеры тоже распространены мало. На сероводородных барьерах наиболее эффективно накапливаются халькофильные элементы (так как они непосредственно связываются с серой, образуя сульфидные соединения), отчасти – сидерофильные, и в наименьшей мере литофильные.
Самый обычный случай возникновения природного сероводородного барьера при латеральной миграции – это контакт кислородных вод с сероводородными илами. Например, при впадении реки в озеро, на дне которого развиты сероводородные илы. Такой барьер может возникать в приустьевых частях рек. Подобный случай подробно изучен Алексеенко на примере устья Дона. Здесь при ветровом нагоне морской волны воды в приустьевой части реки приобретают сульфатно-кальциево-натриевый состав. А микроорганизмы в донных илах восстанавливают сульфатные соединения до сульфидных, и возникает сероводородная среда. На контакте этих илов с кислородными водами возникает сероводородный барьер, где накапливаются сульфидные соединения различных металлов.
Пример функционирования
природных геохимических
Известны случаи возникновения локальных очагов сероводородного заражения (и, следовательно, возможности появления сероводородных барьеров) в гумидном климате при смешении грунтовых кислородных и глеевых вод. Необходимое условие для этого – сульфатный состав кислородных вод. Это может быть следствием миграции кислородных вод через зону окисления горных пород, содержащих сульфиды. При окислении сульфидов образуется сульфат-ион SO42-. При просачивании таких насыщенных сульфат-ионами кислородных вод в основание низинного торфяника, они попадают в среду с восстановительными условиями. Здесь сульфат-ион, действуя как окислитель, окисляет, при участии деятельности серобактерий, присутствующие в торфе органические углеводородные соединения. А сам при этом восстанавливается с образованием сероводорода. В результате в узкой полосе вдоль границы между кислородными водами и глеевой средой возникает сероводородная обстановка. И, с учётом направления водной миграции, функционирует сероводородный барьер типа В2.
Глеевые барьеры (С)
Эти барьеры в наиболее
типичных случаях возникают на участках
резкой смены кислородной обстановки
глеевой. Реже – слабоглеевой обстановки
резкоглеевой, то есть тоже глеевой, но
характеризующейся ещё более низкими
значениями окислительно-
Глеевые барьеры очень широко распространены в гумидных и семиаридных ландшафтах, особенно в супераквальных (с неглубоким залеганием грунтовых вод), где развиваются процессы заболачивания. При заболачивании формируется глеевая среда. В результате нисходящего движения почвенных вод или латерального стока грунтовых вод из сопряжённых возвышенных ландшафтов по периферии зоны заболачивания формируются глеевые барьеры типа С2 или С3.
Возможно также возникновение глеевых барьеров в краевых частях артезианских бассейнов. Воды внутренних частей этих бассейнов залегают между водоупорными горизонтами, которые также изолируют водоносный горизонт от проникновения атмосферного кислорода. Те же воды, которые поступают в артезианский бассейн из области питания, по мере своего продвижения могут терять кислород, расходуя его на окисление содержащегося в водоносном горизонте органического вещества. В результате во внутренних частях артезианского бассейна формируется бескислородная среда. Если при этом в водах содержится мало сульфат-иона, они будут глеевыми. На границе кислородных вод, поступающих из области питания, и глеевых вод внутренней части артезианского бассейна, будет формироваться подвижный глеевый барьер.
Щелочные барьеры (D)
Возникают на участках резкого повышения рН среды в нейтральной, кислой и щелочной обстановках. В соответствии с общими законами миграции на них происходит накопление преимущественно катионогенных химических элементов, лучше мигрирующих в кислой среде: Fe, Mn, Ni, Co, Cu, в том числе такие высоко токсичные загрязнители природной среды, как Pb, Cd, Hg, As, U и др.
Характерный пример: почвенный профиль элювиального ландшафта влажных тропиков на карбонатных породах. Сверху формируются кислые почвы, повышенная кислотность которых обеспечивается разложением больших объёмов органических остатков. Растворы, фильтрующиеся через эти почвы, попадают в карбонатные горные породы, трещинные воды которых имеют щелочную реакцию. Возникает щелочной барьер типа D2.
Способность многих токсичных элементов осаждаться на щелочных барьерах используют для локализации загрязнения, создавая такие барьеры искусственно. Например, для обработки виноградников широко используется в качестве фунгицида смесь медного купороса CuSO4 и гашеной Ca(OH)2извести (бордосская смесь).
В результате при многолетнем применении этого средства в почве накапливается избыток меди, достигающий опасного уровня – особенно в почвах подчинённых ландшафтов, куда мигрируют почвенные растворы. Для борьбы с загрязнением на путях миграции растворов роют траншеи, которые заполняют песчано-карбонатной смесью, в которых возникает щелочная среда.
Формируется щелочной барьер, на котором медь связывается в форме малоподвижного в этих условиях гидрокарбонатного соединения малахита – Cu2CO3(OH)2.
Кислые барьеры (Е)
Возникают на путях миграции химических элементов при резком снижении рН среды. В противоположность щелочным барьерам, на них накапливаются не катионогенные, а анионогенные элементы, более активно мигрирующие в условиях щелочной среды. К ним принадлежат Si, Al, Mo, Be, Ga, Sc, Y, Zr, TR и др. Как правило, эти элементы мигрируют в форме растворимых солей щелочных металлов, подвижных в щелочной среде – Na2SiO3, Na2AlO2, Na2MoO4 и др.
Чаще всего в природе встречаются (и лучше всего изучены) кислые барьеры, возникающие при попадании щелочных содовых вод в кислую среду. Такая ситуация возникает при радиальной испарительной миграции (капиллярное «вытягивание» щелочных растворов с глубины в более кислую почвенную среду) – пример хорошо изучен в Северном Казахстане. Накапливаются Si, Y, Be, Se, Zr и ряд других элементов.
Яркий пример действия кислого барьера – замещение древесных остатков опалом и халцедоном (оксидными соединениями кремния). Если древесина захороняется в почвах аридных ландшафтов, имеющих щелочную среду, то при её разложении возникают очаги повышенной кислотности на щелочном фоне. Щелочные растворы, содержащие подвижные соединения кремния, приникают в разлагающуюся древесину – и здесь, на локальном кислотном барьере, осаждаются слабо подвижные соединения кремнезёма. В более широком плане этот процесс назван М.А. Глазовским хемогенным опалогенезом. Он протекает в различных ландшафтных обстановках именно на кислых барьерах.
Специфический случай возникновения кислого барьера – водонефтяной контакт. Уходящий из нефтяной залежи метан окисляется, и подкисляет поровые воды выше контакта нефтяной залежи. Этого оказывается достаточно для выпадения из раствора кремнезёма и закупоривания им пор в рыхлых грунтах.
Испарительные барьеры (F)
Это участки зоны гипергенеза,
где накопление химических элементов
обусловлено процессами испарения. Первая
существенная особенность этих барьеров
– действие в условиях самых разнообразных
по химизму обстановок. То есть действие
испарительного барьера лишь в незначительной
степени зависит от параметров кислотности-щёлочности
среды или окислительно-
Условия возникновения испарительного
барьера – сухой климат и неглубокое
залегание грунтовых вод (нарисовать
схему). В такой ситуации водные растворы
поднимаются с водоносного
Глубина, с которой возможен капиллярный подъём грунтовых вод к поверхности, зависит от температуры (чем выше Т, тем с больших глубин возможен такой подъём). Другие факторы – размеры пор, минеральный состав грунтов, минерализация растворов. То есть зависимость достаточно сложная. Но в целом обычно испарительная концентрация солей в условиях аридного климата начинает проявляться начиная с глубин 3,5-4 м, и особенно усиливается с глубин 2,5-3 м. Нередко полное испарение воды происходит раньше, чем она достигает поверхности, то есть внутри почвенного профиля. Для испарительных барьеров характерна вертикальная зональность, связанная с тем, что разные соли имеют разную растворимость и, при повышении минерализации раствора, выпадают в осадок поочерёдно. Вначале идёт осаждение и накопление карбонатов Ca и Mg, затем – гипса (сульфат Ca), и наконец – наиболее растворимых соединений (хлоридов Na и K, некоторых сульфатных соединений, реже – нитратов Na и Mg).
Аналогичная зональность нередко бывает развёрнута и по латерали, так как минерализация грунтовых вод обычно увеличивается в процессе их стока от области питания (если процессы испарения действуют на значительных интервалах по пути движения грунтовых вод).
Так как в типичном случае
испарительный барьер возникает
при вертикальном движении вод в
сторону земной поверхности, он может
в природе совмещаться с
Испарительные барьеры могут также формироваться по периферии водоёмов (рек, озёр, водохранилищ). Дело в том, что капиллярно-плёночное перемещение может иметь не только вертикальную, но и латеральную (горизонтальную) направленность. Если грунты постоянно «подпитываются» водами поверхностного водоёма, то в условиях засушливого климата тот же механизм капиллярного «вытягивания» может действовать и в латеральном направлении. Это явление нередко приобретает опасный характер в условиях техногенного загрязнения водоёмов в аридных ландшафтах. В.А. Алексеенко описан случай, когда в окрестностях отстойника, куда сбрасывались загрязнённые воды, содержание свинца в почвах окружающих территорий выросло до 1%, а цинка - даже до 10%!. На рудных месторождениях такие содержания уже считались бы промышленными, а здесь они сформировались в почве!
Но такие случаи являются относительно редкими. А вот типичный негативный результат действия испарительного барьера заключается в том, что с ним связано развитие процессов засоления почв и, как результат – ухудшение плодородия почв, вплоть до полной непригодности для земледелия. Ежегодно из-за процессов засоления огромные площади земель выходят из сельхозоборота. особенно вредными являются процессы содового засоления, так как кроме увеличения содержания солей в почвах одновременно резко увеличивается и щёлочность среды.
Сорбционные барьеры (G)
Ещё одна важнейшая группа процессов, определяющих физико-химическую миграцию в водных средах – это сорбционные процессы (сорбция и десорбция). Сорбцией называется способность тел поглощать из окружающей среды растворённые вещества или газы. В том числе такой способностью обладают присутствующие в водной среде мелкие взвешенные частицы, в том числе и мицеллы коллоидов. Сорбированные ионы могут либо выводиться из водной среды в результате выпадения частиц в осадок (в частности, при коагуляции коллоидов), либо мигрировать дальше, пассивно переносясь сорбировавшими их частицами.
Сорбционные барьеры возникают в результате резкого снижения миграционной способности химических элементов при фильтрации ионных водных растворов или газовых смесей через среды, обладающие повышенной сорбционной способностью. Эти барьеры особенно важны для элементов с низкими кларками, так как осаждение в процессе сорбции может происходить при очень низких концентрациях, намного меньших, чем концентрации насыщения.
Таким образом, роль сорбции в миграционных процессах может быть двоякой, в зависимости от конкретных условий:
•сорбция может быть причиной осаждения вещества из раствора;
•сорбция может способствовать пассивной миграции вещества при механическом переносе частиц-сорбентов.
Различаются два вида процессов сорбирования: адсорбция и абсорбция. В первом случае сорбируемое вещество поглощается только поверхностью тела, во втором – всем его объёмом.
Адсорбция может иметь
разную природу. Химическая адсорбция
основана на установлении прочных химических
связей адсорбента с поглощающим
веществом и практически
Информация о работе Геохимические барьеры и защита окружающей среды