Автор работы: Пользователь скрыл имя, 23 Мая 2013 в 23:13, реферат
До середины нынешнего столетия влияние воздушных ли¬ний (ВЛ) на окружающую среду практически не учитывалось из-за малой плотности размещения сетей и небольшого разнообразия их конструктивных решений. С ростом класса напряжения (500, 750, и более 1000 кВ), дальности электро¬передач усиливается воздействие ВЛ на био- и социальные сферы, что заставило с начала 70-х гг. серьезно заняться изу¬чением этих воздействий и поиском путей снижения их отри¬цательного влияния на окружающую среду. Растет также плотность размещения распределительных сетей, что делает проблему особенно острой в густонаселенных районах. Так, в некоторых регионах плотность размещения линий электропередачи разных напряжений достигает порогового значения, при котором на окружающую среду воздействует уже не одна ВЛ, а их совокупность. Эту особенность «за¬грязнения» среды совокупностью ВЛ необходимо учитывать при проектировании электрических сетей.
Если экраны под проводами фаз выполнить в виде линии электропередачи более низкого класса напряжения, то имеем случай комбинированной ЛЭП. Это линия с пониженным экологическим влиянием, обусловленным разной ориентацией в пространстве векторов напряженности электрического поля от каждой цепи. Эксплуатация же двухцепной линии с разными системами напряжений связана с трудностями, обусловленными их взаимным электромагнитным влиянием и существенным изменением параметров обеих цепей по сравнению с одноцепными линиями, особенно параметров нижней цепи.
Ограничение напряженности
поля под ВЛ может быть достигнуто
без изменения конструкции
Деревья и кустарники обладают экранирующим эффектом, аналогичным эффекту от заземленных металлических экранов, что может оказаться одним из эффективных и перспективных способов ограничения напряженности электрического поля на высоте, соответствующей среднему росту человека. На рис.1.5 представлены зависимости экранирующего влияния отдельных кустарников на опытном пролете линии класса 1200 кВ.
В пределах куста напряженность поля равна нулю, а наличие под проводами массива кустарников площадью 3Х4 м2 и высотой 3 м позволило расширить зону нулевой напряженности. Измерения напряженности электрического поля под действующими электропередачами 330-750 кВ показали, что при наличии сплошного растительного массива высотой свыше 2,5 м напряженность на уровне роста человека практически не отличается от нормального уровня напряженности электрического поля Земли. В качестве растительного массива целесообразно использовать древесно-кустарниковые породы, достаточно долговечные и устойчивые в районах культивирования, имеющие предельную высоту 4—5 м и позволяющие получать ценную хозяйственную продукцию: в южных районах—фруктовые сады: в средней полосе—фундук; в условиях Сибири—кедровник [5].
Проведены изменения напряженности электрического поля в междурядьях фруктового сада, расположенного под проводами линии 750 кВ в ОЭС Юга. Средняя высота деревьев в таком саду равна 4—5 м, диаметр крон 5—7 м, расстояние между деревьями около 8 м. Согласно подученным данным максимальная напряженность электрического поля наблюдается в середине междурядья и не превышает 3 кВ/м, т. е. в 3,5 раза меньше, чем при отсутствии деревьев [З].
Даже в случае создания
внутри сплошного растительного
массива эксплуатационного
Физическая сущность защитного действия кустарников заключается в том, что живые кусты, обладая достаточной проводимостью, выносят потенциал земли на высоту, превышающую рост человека, чем и создается экранирующий эффект.
Напряженность поля в массиве растительности обусловлена падением напряжения от емкостного тока на активном сопротивлении веток, равного
где /с — часть полного тока смещения, протекающего через зону растительности шириной 1 м;
где (Uф — фазное напряжение линии; Н — расстояние от провода до земли; rэ — эквивалентный радиус расщепленного провода; Rв — сопротивление массива кустарника шириной 1 м:
Rв = rэ ×lв/nв (1.10)
где rв—погонное сопротивление ветки; lв—длина веток;
nв — число веток на 1 м2 растительного массива.
Получено значение rв =1—3,5 Ом/м в летнее время и 100—500 ЛЮм/м зимой, причем при температурах наружного воздуха ниже —10°С это сопротивление может достигать 2000—5000 МОм/м. Сопротивлением корней деревьев в этом случае можно пренебречь.
В этом случае максимальное падение напряжения на растительности при nв =40 и lв ==1,5 м равно
Расчеты показывают, что напряженность поля в массиве растительности, обусловленная падением напряжения от емкостного тока на активном сопротивлении веток, при положительных температурах ничтожно мала и заметно повышается при снижении температуры, но при высоте растительности 3 м не превосходит 0,35—0,7 кВ/м для линий напряжением 330 кВ и 1—2 кВ/м—для линий напряжением 750 кВ. На тонких верхних ветках падение напряжения больше, на стволах значительно меньше [4].
Таким образом, в пределах роста человека напряженность поля будет в 2—3 раза меньше, чем на уровне кроны деревьев. Это свидетельствует о высокой надежности использования растительного массива для ограничения напряженности электрического поля под линиями электропередач переменного тока.
2. ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ НА ЛЮДЕЙ, ЖИВОТНЫЙ И РАСТИТЕЛЬНЫЙ МИР
Биологическое влияние
электрических и магнитных
Магнитные поля на нашей
планете имеют двоякое
Один из наиболее сильных возбудителей электромагнитных волн—токи промышленной частоты (50 Гц). Так, напряженность электрического поля непосредственно под линией электропередачи может достигать нескольких тысяч вольт на метр почвы, хотя из-за свойства снижения напряженности почвой уже при удалении от линии на 100 м напряженность резко падает до нескольких десятков вольт на метр.
Исследования биологического воздействия электрического поля обнаружили, что уже при напряженности 1 кВ/м оно оказывает неблагоприятное влияние на нервную систему человека, что в свою очередь ведет к нарушениям эндокринного аппарата и обмена веществ в организме (меди, цинка, железа и кобальта), нарушает физиологические функции: ритм сердечных сокращений, уровень кровяного давления, активность мозга, ход обменных процессов и иммунную активность.
Начиная с 1972 г. появились публикации, в которых рассматривалось влияние на людей и животных электрических полей с величинами напряженности более 10 кВ/м.
Напряженность магнитного поля пропорциональна току и обратно пропорциональна расстоянию; напряженность электрического поля пропорциональна напряжению (заряду) и обратно пропорциональна расстоянию. Параметры этих полей зависят от класса напряжения, конструктивных особенностей и геометрических размеров высоковольтной ЛЭП. Появление мощного и протяженного источника электромагнитного поля приводит к изменению тех естественных факторов, при которых сформировалась экосистема. Электрические и магнитные поля могут индуцировать поверхностные заряды и токи в теле человека (рис. 2.2). Исследования показали, что максимальный ток в теле человека, индуцированный электрическим полем, намного выше, чем ток, вызванный магнитным полем.
Так, вредное воздействие магнитного поля проявляется лишь при его напряженности около 200А/м, что бывает на расстоянии 1—1,5 м от проводов фазы линии и опасно только для обслуживающего персонала при работах под напряжением. Это обстоятельство позволило сделать вывод об отсутствии биологического влияния магнитных полей промышленной частоты на людей и животных, находящихся под ЛЭП Таким образом, электрическое поле ЛЭП является главным биологически действенным фактором протяженной электропередачи, который может оказаться барьером на пути миграции движения разных видов водной и сухопутной фауны.
Исходя из конструктивных особенностей электропередачи (провисания провода) наибольшее влияние поля проявляется в середине пролета, где напряженность для линий сверх- и ультравысокого напряжения на уровне роста человека составляет 5—20 кВ/м и выше в зависимости от класса напряжения и конструкции линии (рис. 1.2). У опор, где высота подвеса проводов наибольшая и сказывается экранирующее влияние опор, напряженность поля наименьшая. Так как под проводами ЛЭП могут находиться люди, животные, транспорт, то возникает необходимость оценки возможных последствий длительного и кратковременного пребывания живых существ в электрическом поле различной напряженности. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. Наведенный потенциал в этом случае может достигать 10 кВ, а импульс тока через организм при касании к заземленному предмету (ветке куста, травинке) 100—200 мкА. Такие импульсы тока безопасны для организма, но неприятные ощущения заставляют копытных животных избегать трассы высоковольтных ЛЭП в летнее время [10].
В действии электрического поля на человека доминирующую роль играют протекающие через его тело токи. Это определяется высокой проводимостью тела человека, где преобладают органы с циркулирующей в них кровью и лимфой. В настоящее время экспериментами на животных и людях-добровольцах установлено, что плотность тока проводимостью 0,1 мкА/см2 и ниже не влияет на работу мозга, так как импульсные биотоки, обычно протекающие в мозгу, существенно превышают плотность такого тока проводимости. При 0,1 мкА/см2 в глазах человека наблюдается мелькание световых кругов, более высокие плотности токов уже захватывают пороговые значения стимуляции сенсорных рецепторов, а также нервных и мышечных клеток, что ведет к появлению испуга, непроизвольным двигательным реакциям. В случае касания человека к изолированным от земли объектам в зоне электрического поля значительной интенсивности, плотность тока в зоне сердца сильно зависит от состояния «подстилающих» условий (вида обуви, состояния почвы и т. д.), но уже может достигать этих величин. При максимальном токе, соответствующем Етах == l5 кВ/м (6,225 мА); известной доле этого тока, втекающего через область головы (около 1/3), и площади головы (около 100 см2) плотность тока j<0,1 мкА/см2, что и подтверждает допустимость принятой напряженности 15 кВ/м под проводами воздушной линии.
Для здоровья человека проблема состоит в определении связи между плотностью тока, наведенного в тканях, и магнитной индукцией внешнего поля, В. Вычисление плотности тока
осложняется тем, что его точный путь зависит от распределения проводимости у в тканях тела.
Так, удельную проводимость мозга определяют g=0,2 см/м, а сердечной мышцы g==0,25 см/м. Если принять радиус головы 7,5 см, а сердца 6 см, то произведение gR получается одинаковым в обоих случаях. Поэтому можно давать одно представление для плотности тока на периферии сердца и мозга.
Определено, что безопасная для здоровья магнитная индукция составляет около 0,4 мТл при частоте 50 или 60 Гц. В магнитных полях (от 3 до 10 мТл; f=10—60 Гц) наблюдалось возникновение световых мерцаний, аналогичных тем, которые возникают при надавливании на глазное яблоко.
Плотность тока, индуцированного в теле человека электрическим полем с величиной напряженности Е, вычисляется таким образом:
с различными коэффициентами k для области мозга и сердца. Значение k=3×10-3 см/Гц×м. По данным ученых ФРГ напряженность поля, при которой вибрацию волос ощущают 5% испытуемых мужчин, составляет 3 кВ/м и для 50% мужчин, подвергшихся испытаниям, она равна 20 кВ/м. В настоящее время отсутствуют данные о том, что ощущения, вызванные действием поля, создают какое-либо неблагоприятное влияние. Что касается связи плотности тока с биологическим влиянием, то можно выделить четыре области, представленные в табл. 2.1.
Последняя область значения плотности тока относится к временам воздействия порядка одного сердечного цикла, т. е. приблизительно 1 с для человека. Для более коротких экспозиций пороговые значения выше. Для определения порогового значения напряженности поля были выполнены физиологические исследования на людях в лабораторных условиях при напряженности от 10 до 32 кВ/м. Установлено, что при напряженности 5 кВ/м 80% людей не испытывают болевых ощущений при разрядах в случае касания заземленных предметов.
Таблица 2.1
J, мкА/см2 |
Наблюдаемые эффекты |
0,1 |
Нет |
1,0 |
Мелькание световых кругов в глазах |
10-50 |
Острые невралгические симптомы подобные тем, которые вызываются электрическим током |
более 100 |
Возрастает вероятность фибрилляции желудочка сердца, остановка сердечной деятельности, длительный спазм дыхательных мышц, серьезные ожоги |
Именно эта величина была принята в качестве нормативной при работах в электроустановках без применения средств защиты. Зависимость допустимого времени пребывания человека в электрическом поле с напряженностью Е более порогового аппроксимируется уравнением
Выполнение этого условия обеспечивает самовосстановление физиологического состояния организма в течение суток без остаточных реакций и функциональных или патологических изменений.
Ознакомимся с основными
результатами исследований биологических
влияний электрических и
2.1. Влияние
электрических полей на
Во время исследований на верхней части предплечья каждого рабочего закрепляли интегрирующий дозиметр. Установлено, что у рабочих на высоковольтных линиях среднее значение дневной экспозиции составило от 1,5 кВ/(м×ч) до 24 кВ/(м×ч). Максимальные значения отмечены в очень редких случаях. Из полученных данных исследования можно сделать вывод об отсутствии заметной взаимосвязи между экспозицией в полях и общим состоянием здоровья людей.
2.2. Воздушные ЛЭП и рак у детей
В жилых помещениях магнитное поле может создаваться бытовым электрооборудованием и электропроводкой, внешними подземными кабелями, а также воздушными ЛЭП. Исследуемые и контрольные объекты группировали в интервалах 25 м до воздушной ЛЭП, причем степень риска на расстоянии более 100 м от линии была принята за единицу.
Полученные результаты не подтверждают гипотезы о том, что магнитные поля промышленной частоты влияют на возникновения рака у детей.
Информация о работе Экологические аспекты передачи электроэнергии