Экологические факторы и их взаимодействие

Автор работы: Пользователь скрыл имя, 04 Мая 2015 в 22:51, реферат

Описание работы

В понятие природной среды входят все условия живой и неживой природы, в которых существуют организм, популяция, природное сообщество. Природная среда прямо или косвенно влияет на их состояние и свойства.
Экологические факторы - отдельные элементы среды, взаимодействующие с организмами.

Содержание работы

Введение
1 Экологические факторы и их взаимодействие.
1.1 Абиотические факторы
1.2 Биотические факторы
1.3 Ограничивающий фактор
1.4 Антропогенный фактор
2 Виды и формы загрязнений окружающей среды.
2.1 Загрязнение атмосферы
2.2 Загрязнение почвы
2.3 Загрязнение воды
Список использованной литературы

Файлы: 1 файл

эколог.факторы.docx

— 69.37 Кб (Скачать файл)

 

 

Содержание

 

Введение
1 Экологические факторы и их взаимодействие.
1.1 Абиотические факторы
1.2 Биотические факторы
1.3 Ограничивающий фактор
1.4 Антропогенный фактор

2 Виды  и формы загрязнений окружающей  среды.

2.1 Загрязнение атмосферы

2.2 Загрязнение  почвы

2.3 Загрязнение воды

Список использованной литературы

 

 

1 Экологические факторы и их взаимодействие.

 

В понятие природной среды входят все условия живой и неживой природы, в которых существуют организм, популяция, природное сообщество. Природная среда прямо или косвенно влияет на их состояние и свойства.

Экологические факторы - отдельные элементы среды, взаимодействующие с организмами.

Экологический фактор - движущая сила совершающихся процессов, на которое живое реагирует приспособительными реакциями.

Экологические факторы принято делить на природные и антропогенные.

Воздействие факторов среды на живые организмы в отдельности и сообщества в целом многогранно. При оценке влияния того или иного фактора среды важным оказывается характеристика интенсивности действия его на живую материю: в благоприятных условиях говорят об оптимальном, а при избытке или недостатке - ограничивающем факторе. 
           Компоненты природной среды, влияющие на состояние и свойства организма, популяции, природного сообщества, называют экологическими факторами.

Среди них различают разные по своей природе группы факторов:

абиотические факторы - все компоненты неживой природы, среди которых наиболее важны свет, температура, влажность и другие компоненты климата, а также состав водной, воздушной и почвенной среды, т.е. элементы неживой природы;

биотические факторы - живые тела, или организмы; взаимодействия между различными особями в популяциях, между популяциями в природных сообществах;

ограничивающие факторы - экологические факторы, выходящие за границы максимума или минимума выносливости, ограничивающие существование вида.

антропогенный фактор - вся разнообразная деятельность человека, которая приводит к изменению природы как среды обитания всех живых организмов или непосредственно сказывается на их жизни (вырубка леса, осушение болот, возведение плотины, выброс в атмосферу различных химических веществ и пр.).

Разные экологические факторы (температура, влажность, пища) действуют на каждую особь. В ответ на это у организмов через естественный отбор вырабатываются различные приспособления к ним. Интенсивность факторов, наиболее благоприятную для жизнедеятельности, называют оптимальной или оптимумом.

Оптимальное значение того или иного фактора для каждого вида различно. В зависимости от отношения к тому или иному фактору виды могут быть тепло- и холодолюбивые (слон и белый медведь), влаго- и сухолюбивые (липа и саксаул), приспособленные к высокой или низкой солености воды и т. д.

 

1.1 Абиотические  факторы

 

Температура. Большинство видов приспособлено к довольно узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, способны существовать при очень низких температурах. Например, споры микроорганизмов выдерживают охлаждение до - 200°С. Отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре +80 +88°С. Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы выносливости к колебаниям температуры у водных организмов уже, чем у наземных. Однако и для водных и для наземных обитателей оптимальной является температура в пределах 15-30°С.

Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойотермные.

Температура тела пойкилотермных организмов зависит от температуры окружающей среды. Ее повышение вызывает у них интенсификацию жизненных процессов и, в известных пределах, ускорение развития.

Гораздо меньше зависят от температурных условий среды животные гомойотермные - птицы и млекопитающие. Ароморфные изменения строения позволили этим двум классам сохранять активность при очень резких перепадах температур и освоить практически все места обитания.

Таким образом, температура окружающей среды представляет собой важный и зачастую ограничивающий жизненные проявления фактор.

Свет в форме солнечной радиации обеспечивает все жизненные процессы на Земле. Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина дня, или фотопериод). Ультрафиолетовые лучи с длиной волны более 0,3 мкм составляют примерно 40% лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Энергия видимого света составляет около 45% общего количества лучистой энергии, падающей на Землю.

Чрезвычайно важную роль в регуляции активности живых организмов и их развития играет продолжительность воздействия света – фотопериод, который представляет собой как бы пусковой механизм, последовательно включающий физиологические процессы, приводящие к росту, цветению растений весной, плодоношению летом и сбрасыванию ими листьев осенью, а также к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.

Кроме сезонных изменений смена дня и ночи определяет суточный ритм активности как целых организмов, так и физиологических процессов. Способность организмов ощущать время, наличие у них «биологических часов» - важное приспособление, обеспечивающее выживание особи в данных условиях среды.

Инфракрасное излучение составляет 45% от общего количества лучистой энергии, падающей на Землю. Инфракрасные лучи повышают температуру тканей растений и животных, хорошо поглощаются объектами неживой природы, в том числе водой.

Влажность. Вода играет исключительно важную роль в жизнедеятельности клетки и организма в целом. Поддержание количества воды на достаточном уровне составляет одну из основных физиологических функций любого организма.

Роль влажности как экологического фактора для наземных организмов обусловлена тем, что осадки (а соответственно влажность воздуха и почвы) распределяются на земной поверхности в течение года очень неравномерно. Так как большинство наземных животных и растений влаголюбивы, то недостаток влажности часто оказывается причиной, ограничивающей их жизнедеятельность и распространение.

Температура тела. Все химические процессы, протекающие в организме, зависят от температуры - внешней и внутренней. Особенно ясно зависимость от внешней температуры выражена у организмов, неспособных поддерживать постоянную температуру тела, т. е. у всех растений и большинства животных, кроме птиц и млекопитающих.

Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов, но редко бывает выше 40-45°С. Только немногие виды приспособлены к жизни при более высокой температуре.

Оптимальная температура зависит от условий обитания вида, к которым он приспособился на основе естественного отбора в течение предшествующей эволюции.

 

1.2 Биотические  факторы

 

Помимо абиотических воздействий живые организмы испытывают на себе и влияние друг друга. Определяющими факторами в этом отношении являются видовое разнообразие сообщества и численность популяций, образующих биоценоз.

Видовое разнообразие биоценозов. Каждый живой организм живет в окружении множества других, вступая с ними в самые разнообразные отношения, как с положительными, так и с отрицательными для себя последствиями. Связь с другими организмами обеспечивает питание и размножение, возможность защиты, смягчает неблагоприятные условия среды. В то же время биотическое окружение - это и опасность ущерба или гибели.

Рассмотрим два примера биоценозов. В неглубоких водоемах, прудах, мелких озерах солнечный свет проникает до дна, создавая условия для развития водорослей и высших водных растений. В толще воды обитают многочисленные одноклеточные водоросли, нитевидные, многоклеточные водоросли. На поверхности воды в летнее время встречаются скопления тины - это тоже водоросли. На дне некоторые мхи образуют обширные темно-зеленые скопления. Вблизи берегов растет водяной хвощ, на поверхности воды можно встретить водяной папоротник - сальвинию. Обильно представлены цветковые растения: камыш, тростник, рогоз, обитающие у берегов. На поверхности воды плавают листья и цветки белой кувшинки или желтой кубышки. Нередко вся поверхность прудов покрыта мелкими пластинками ряски. Часто можно встретить и многие другие водные растения, например пузырчатку, роголистник.

Животный мир пресноводного водоема еще более богат и J разнообразен. В воде и иле, покрывающем дно, обитают бактерии, многочисленные простейшие (голые и раковинные амебы, жгутиковые, инфузории), мелкие рачки, личинки насекомых, плоские черви (планарии). В грунте водоемов распространены свободноживущие круглые черви, в огромных количествах встречается кольчатый червь трубочник, весьма обычны пиявки. На листьях водных растений сидят пресноводные гидры, очень многочисленны разнообразные моллюски, например крупный хищный клоп гладыш, или водяной скорпион. Наконец, в пресноводных водоемах обычно обитают растительноядные и хищные рыбы, амфибии и их личинки - головастики. Этот, далеко не полный, перечень обитателей водоема дает все же представление о его видовом разнообразии. В состав биоценоза всегда входит очень много (до нескольких тысяч) видов самого разного уровня организации - от бактерий до позвоночных. Их взаимоотношения в среде обитания в первую очередь определяются пищевыми потребностями. В приведенном примере одноклеточные водоросли служат пищей простейшим, низшим ракообразным - циклопам и дафниям, личинкам насекомых, фильтрующим двустворчатым моллюскам. Высшие растения поедаются растительноядными рыбами, скоблящими брюхоногими моллюсками, личинками некоторых насекомых. В свою очередь, мелкие рачки, черви, личинки насекомых служат пищей рыбам и амфибиям. Хищные рыбы охотятся на растительноядных. В воде кормятся некоторые млекопитающие, например выхухоль, питающаяся моллюсками, насекомыми и их личинками, иногда рыбой. Мертвые органические остатки падают на дно. На них развиваются бактерии, которые в свою очередь потребляются простейшими, фильтрующими моллюсками и т.д. Таким образом, пищевые отношения служат регуляторами численности видов, входящих в биоценоз.

Цепи питания. Помимо видового разнообразия биоценозы характеризуются сложной пространственной структурой. Так, в каждом ярусе леса поселяются многочисленные животные, основной формой взаимоотношений которых, так же, как и в других биоценозах, являются пищевые отношения.

Ряд взаимосвязанных видов, из которых каждый предыдущий служит пищей последующему, носит название цепи питания. Можно сказать также, что пищевая цепь, или цепь питания, - это перенос энергии от ее источника - растений - через ряд организмов путем поедания одних видов другими. Таким образом, цепи питания - это трофические связи между видами (от греч. trophos - питание). В основе цепей питания лежат зеленые растения, которыми питаются насекомые и позвоночные животные, в свою очередь служащие источником энергии и вещества для построения тела потребителей второго, третьего и других порядков. Общая их закономерность в том, что количество особей, включенных в пищевую цепь, последовательно уменьшается, и численность жертв значительно больше численности их потребителей. Это происходит потому, что в каждом звене пищевой цепи, при каждом переносе энергии, 80-90% ее теряется, рассеиваясь в форме теплоты. Это обстоятельство ограничивает число звеньев в цепи (обычно из 3-5). В среднем из 1 тыс. кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить из этого количества 10 кг своей биомассы, а вторичные хищники только 1 кг. Например, человек съедает большую рыбу. Ее пищу составляют мелкие рыбы, потребляющие зоопланктон, который живет за счет фитопланктона, улавливающего солнечную энергию. Таким образом, для построения 1 кг тела человека требуется 10 тыс. кг фитопланктона. Следовательно, масса каждого последующего звена в цепи прогрессивно уменьшается. Эта закономерность носит название правила экологической пирамиды.

В реальных условиях цепи питания могут иметь разное число звеньев. Кроме того, цепи питания могут перекрещиваться, образуя сети питания. Почти все виды животных, за исключением очень специализированных в пищевом отношении, используют не один какой-нибудь источник пищи, а несколько). Чем больше видовое разнообразие в биоценозе, тем он устойчивее. Так, в цепи питания растения-заяц-лиса - всего три звена. Но лиса питается не только зайцами, но и мышами и птицами. Общая закономерность состоит в том, что в начале пищевой цепи всегда находятся зеленые растения, а в конце - хищники. С каждым звеном в цепи организмы становятся крупнее, они медленнее размножаются, их число уменьшается. Виды, занимающие положение низших звеньев, хотя и обеспечены питанием, но сами интенсивно потребляются (мышей, например, истребляют лисы, волки, совы). Отбор идет в направлении увеличения плодовитости. Такие организмы превращаются в кормовую базу высших животных без всяких перспектив прогрессивной эволюции.

Информация о работе Экологические факторы и их взаимодействие