Автор работы: Пользователь скрыл имя, 15 Мая 2013 в 14:39, курсовая работа
Экологический мониторинг - система контроля антропогенных загрязнений окружающей среды. Природные экологические системы тесно взаимодействуют друг с другом. Это предопределяет сложность и необходимость учета различных природных и химических факторов при контроле качества окружающей среды методами классической и современной аналитической химии.
Введение
1. Химические основы экологического мониторинга
1.1 Экологическое нормирование
1.2 Аналитическая химия и экологический мониторинг
1.3 Пробоподготовка в анализе объектов окружающей среды
Методы определения загрязняющих веществ
2. Экологический мониторинг и загрязнение нефтепродуктами
2.1 Экологический мониторинг и обследование трубопроводов нефтепродуктов
2.2 Технология многоуровневого экологического мониторинга в целях информационного обеспечения безопасности морской добычи нефти и газа
2.3 Комплексный многоуровневый мониторинг морской среды
2.4 Технические средства комплексного экологического мониторинга
3. Станция экологического мониторинга СЭМ-1
Заключение
Список используемой литературы
CoolReferat.com
Федеральное агентство по образованию РФ
Государственное образовательное учреждение
Высшего профессионального образования
Тульский государственный университет
Кафедра «Аэрология, охрана труда и окружающей среды»
Курсовая работа
по дисциплине «Экологический мониторинг »
на тему:
«Экологический мониторинг нефтяных загрязнений»
Выполнил: ст.гр. 340641 Дорохина П.В.
Проверил: доц., к.т.н. Левкин Н.Д.
Тула 2009
Содержание
Введение
1. Химические основы экологического мониторинга
1.1 Экологическое нормирование
1.2 Аналитическая химия и экологический мониторинг
1.3 Пробоподготовка в анализе объектов окружающей среды
Методы определения загрязняющих веществ
2. Экологический мониторинг и загрязнение нефтепродуктами
2.1 Экологический мониторинг и обследование трубопроводов нефтепродуктов
2.2 Технология многоуровневого экологического мониторинга в целях информационного обеспечения безопасности морской добычи нефти и газа
2.3 Комплексный многоуровневый мониторинг морской среды
2.4 Технические средства комплексного экологического мониторинга
3. Станция экологического мониторинга СЭМ-1
Заключение
Список используемой литературы
Введение
Экологический мониторинг - система контроля антропогенных загрязнений окружающей среды. Природные экологические системы тесно взаимодействуют друг с другом. Это предопределяет сложность и необходимость учета различных природных и химических факторов при контроле качества окружающей среды методами классической и современной аналитической химии.
Экология, загрязнение окружающей среды, экологический мониторинг, экологическая химия - часто встречающиеся в наше время слова и сочетания, выражающие всеобщую озабоченность состоянием природной среды. Первопричина возникновения проблемы - обнаружение в экологических системах, прежде всего в биосфере, интенсивных и тревожных изменений, вызванных деятельностью человека, антропогенных изменений. Из большого числа вредных факторов отметим выброс в биосферу химически чуждых природе веществ, физически активных частиц, пыли, аэрозолей, повышение температуры биосферы, энергетическое загрязнение, физическое и биологическое воздействие на нее. Для оценки степени негативных изменений осуществляют экологический мониторинг - систему наблюдений и контроля за изменениями в составе и функциях различных экологических систем.
Экологический мониторинг
- это серьезная и сложная
Результаты аналитических
определений и измерений
Таким образом, основой
экологического мониторинга является
совокупность различных химических
наук, каждая из которых нуждается
в результатах химического
1. Химические основы экологического мониторинга
1.1 Экологическое нормирование
Регулирование качества природной среды основано на определении экологически допустимого воздействия на нее, когда самоочищение природы еще способно работать. Определенными нормами такого щадящего воздействия являются установленные медиками-токсикологами предельно допустимые концентрации загрязняющих веществ (ПДК), не вызывающие нежелательных последствий в природной среде. ПДК достаточно малы. Они установлены для различных объектов - воды (питьевая вода, вода водоемов рыбохозяйственного значения, сточные воды), воздуха (среднесуточная концентрация, воздух рабочей зоны, максимально допустимая разовая ПДК), почв.
Перечень и количество выбрасываемых в окружающую среду загрязняющих веществ чрезвычайно велики, по некоторым оценкам, до 400 тыс. наименований, включая радионуклиды. Прежде всего наблюдению должны подлежать вещества, выброс которых носит массовый характер, и, следовательно, загрязнение ими повсеместно. Это, например, диоксид серы, монооксид углерода, пыль, что характерно для городского воздуха; нефтепродукты, поверхностно-активные вещества для природных вод; пестициды для почв. Обязательно следует контролировать и самые токсичные вещества, отличающиеся наиболее низкими ПДК. Это позволяет сформировать список приоритетных загрязняющих веществ, которые следует определять в первую очередь.
Например, большинство
нормируемых загрязняющих веществ
для воздуха имеют ПДК в
пределах 0,005-0,1 мг/м3. В них попадают пентаоксид ванадия, неорганические
соединения мышьяка (исключая мышьяковистый
водород), шестивалентный хром, некоторые
органические вещества: ацетофенон, стирол
и др. Для небольшого перечня веществ ПДК
еще меньше: металлическая ртуть 0,0003 мг/м3,
свинец и его соединения 0,0007, карбонилникель
0,0005, бенз[а]пирен 0,000 001 мг/м3. Основное
количество нормируемых загрязняющих
веществ для воды водоемов имеют ПДК 0,1-1
мг/л. Для многих токсичных веществ установлена
ПДК 0,001-0,003 мг/л. Это неорганические соединения
селена, ртути, органические соединения
- изомерные дихлорбензолы, тиофос. Небольшое
число веществ - соединения бериллия, диэтилртуть,
тетраэтилолово имеют ПДК в пределах 0,0001-0,0002
мг/л. Для особенно опасных токсичных веществ,
таких, как растворимые соли сероводородной
кислоты, активный хлор, бенз[а]пирен, N-нитрозоамины,
диоксины (например, чрезвычайно токсичный
2,3,7,8-тетрахлордибензо-4-
Отсюда следуют два вывода. Первый состоит в том, что для оценки опасности загрязнения следует иметь некий образец для сравнения. Эту функцию выполняют исследования, проводимые в биосферных заповедниках. Второй вывод относится к аналитической химии: необходимо применять мощные, информативные и чувствительные методы анализа, чтобы контролировать концентрации, меньшие ПДК. В самом деле, что означает нормативное "отсутствие компонента"? Может быть, его концентрация настолько мала, что его традиционным способом не удается определить, но сделать это все равно нужно. Действительно, охрана окружающей среды - вызов аналитической химии.
1.2 Аналитическая химия и экологический мониторинг
Высокоэффективные методы контроля состояния окружающей среды исключительно важны для диагностики токсикантов. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. Кроме того, например, при определении основных компонентов атмосферного воздуха - кислорода, диоксида углерода, озона - требуется высокая точность. Многокомпонентность объектов окружающей среды предопределяет большие сложности в качественном обнаружении и количественном определении загрязняющих веществ. Ключевая роль принадлежит химическим, физическим и физико-химическим методам аналитической химии. В связи с чрезвычайно большим количеством выполняемых анализов все большее значение приобретают автоматические и дистанционные методы анализа.
Примером является аналитическая химия природных и сточных вод. Так, актуальность определения рН вод Мирового океана иллюстрирует схема на рис. 1. Видно, что существует совокупность сложных процессов между находящимися в воде ионами и молекулами, атмосферным углекислым газом и твердым карбонатом кальция. Это приводит к образованию буферной системы с рН 8,0-8,4. Отклонение от этого естественно-оптимального значения рН может привести к крайне нежелательным последствиям, если учесть, что фитопланктон океана производит почти половину всего атмосферного кислорода. Подчеркнем наличие и других показателей качества океанической воды: концентрация катионов и анионов, содержание биогенных элементов, входящих в состав организмов, растворенных газов, микроэлементов, органических веществ.
Глубоким содержанием наполнен перечень обобщенных показателей при мониторинге вод, характеризующих их общую загрязненность. Ими являются химическое потребление кислорода (ХПК), биохимическое потребление кислорода (БПК), общий органический углерод, растворенный органический углерод, общий азот, адсорбирующиеся органические галогениды, экстрагирующиеся органические галогениды.
Рассмотрим важнейшие из них - ХПК и БПК. ХПК (COD - Chemical Oxygen Demand) - мера общей загрязненности воды содержащимися в ней органическими и неорганическими восстановителями, реагирующими с сильным окислителем. Ее обычно выражают в молях эквивалента кислорода, израсходованного на реакцию окисления примесей избытком бихромата:
Остаток бихромата оттитровывают стандартным раствором соли Fe(II):
Поскольку ХПК не характеризует все органические загрязнители, окисляемые до углекислоты и воды, проводят еще определение общего органического углерода. Для этого в пробе в жестких условиях окисляют органические загрязнители. Выделяющийся CO2 поглощают раствором щелочи. Оттитровав остаток щелочи кислотой, находят искомый показатель. Вычислив отношение ХПК к общему органическому углероду, получают показатель загрязненности сточных вод органическими веществами.
БПК (BOD - Biochemical Oxygen Demand) - это количество кислорода, требующееся для окисления находящихся в воде органических веществ в аэробных условиях в результате происходящих в воде биологических процессов. Для его определения отбирают две одинаковые пробы воды. В первой сразу же определяют содержание растворенного кислорода. К пробе добавляют раствор соли Mn(II) и аммиак, в результате чего образуется окислитель - гидратированная форма двуокиси марганца:
O2 + 2Mn(OH)2 2MnO2 aq + 2H2O
Далее вводят избыток иодида калия и выделившийся иод оттитровывают раствором тиосульфата:
MnO2 aq + 4H+ + I- Mn2 + + I2 + 2H2O,
Вторую пробу закрывают и оставляют на 2, 3, 5, 10 или 15 суток. Далее, действуя описанным выше способом, находят остаток кислорода. Разность между первым и вторым определениями дает ХПК.
Особенно велика роль
современных методов
1.3 Пробоподготовка в анализе объектов окружающей среды
Специфика объектов окружающей среды как объектов химического анализа заставляет подчеркнуть их изменяющийся состав, многокомпонентность и многофазность. Известным примером может быть ключевая роль оксидов азота в образовании фотохимического смога, усиливающегося под влиянием озона и углеводородов. Множество протекающих в природной среде химических, биохимических и биогеохимических процессов предопределяет чрезвычайную сложность химико-аналитических исследований. Это необходимо учитывать при анализе жидких сред: растворов (они могут быть истинными, коллоидными, насыщенными), суспензий, эмульсий, летучих и нелетучих твердых веществ, газов; при определении различных неорганических и органических веществ, исследовании живого вещества. Принципиально важны пробоотбор, сохранение и консервация проб и пробоподготовка, необходимая для переведения всех компонентов пробы в форму, удобную для проведения анализа. Для этого используют все способы, применяемые в химическом анализе: измельчение твердых образцов, растворение, обработку различными химическими реактивами, нагревание, один из наиболее современных приемов - микроволновое и ультразвуковое облучение - все для полного извлечения определяемых компонентов. Например, при учете всех форм нахождения металлов в водах можно определить растворимые металлы (в фильтрате пробы, подкисленном азотной кислотой), суспендированные металлы (после кислотного озоления - "мокрого сожжения" кислотами-окислителями осадка на фильтре), общие металлы (после мокрого сожжения всей пробы), экстрагирующиеся металлы (анализ фильтрата после обработки пробы смесью азотной и соляной кислот). Необходимо учитывать также способность ионов тяжелых металлов к гидролизу и гидролитической полимеризации и лигандный состав природных вод - наличие гуминовых кислот и, следовательно, формы существования в них металлов.
Информация о работе Экологический мониторинг нефтяных загрязнений