Экотоксикологическая характеристика в объектах окружающей среды соединений хлора

Автор работы: Пользователь скрыл имя, 08 Декабря 2014 в 16:55, реферат

Описание работы

Непрерывное увеличение промышленного производства химических веществ и расширение их ассортимента, связанные с возрастающими потребностями развивающихся технологий, неизбежно влекут за собой усиление вызываемой ими экологической безопасности. Ее источники чрезвычайно разнообразны и могут включать в себя попадание химических соединений, в том числе и весьма токсичных, в окружающую среду с промышленными отходами при транспортировке и при использовании по прямому назначению. Превышение порогов надежности экологических систем под действием экстремальных факторов антропогенного происхождения может являться причиной существенных изменений условий существования и функционирования биогеоценозов.

Файлы: 1 файл

Экотоксикологическая характеристика соединений хлора.docx

— 70.18 Кб (Скачать файл)

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

«Владимирский государственный университет

Имени А.Г. и Н.Г. Столетовых»

 

 

 

 

 

Кафедра биологии и экологии

 

 

 

Реферат по предмету

«Экологическая токсикология»

На тему:

«Экотоксикологическая характеристика в объектах окружающей среды соединений хлора».

 

 

 

Выполнила

Ст. гр. Э-111

Скорик Ю.А.

Приняла: доцент

Чеснокова С.М.

 

 

 

 

 

 

Владимир 2014

 

Содержание

 

 

Введение.

Непрерывное увеличение промышленного производства химических веществ и расширение их ассортимента, связанные с возрастающими потребностями развивающихся технологий, неизбежно влекут за собой усиление вызываемой ими экологической безопасности. Ее источники чрезвычайно разнообразны и могут включать в себя попадание химических соединений, в том числе и весьма токсичных, в окружающую среду с промышленными отходами при транспортировке и при использовании по прямому назначению. Превышение порогов надежности экологических систем под действием экстремальных факторов антропогенного происхождения может являться причиной существенных изменений условий существования и функционирования биогеоценозов.

Таким образом, в экологическом аспекте любые химические загрязнения являются чужеродным комплексом в экосистеме, способным превысить эволюционно выработанные адаптивные возможности живых организмов.

Практическое значение имеет подразделение вредных веществ, с которыми контактирует биогеоценоз, на четыре класса опасности: I - черезвычайно опасные, II - высокоопасные, III - умеренно опасные и IV - малоопасные. Серъёзную обеспокоенность экологов вызывают продукты хлорного производства, их дальнейший ход и циркуляция в биосфере. Наряду с продуктами промышленного выброса, опасными ксенобиотиками, загрязняющими биосферу, являются применяемые в сельском хозяйстве химические средства защиты растений: гербициды, фунгициды, дефолианты и другие.

Особенно велико и экологически опасно загрязнение токсикантами тканей водных организмов. Установлено, что по мере движения химических соединений по пищевой цепи от продуцентов до консументов, оно вследствие медленного метаболизма и неполной экскреции во внешнюю среду продолжает накапливаться, переходя во всё возрастающих концентрациях.

Всё более актуальной проблемой экологической токсикологии становится установление степени токсичности и опасности ксенобиотиков, освобождающихся при пожарах. Вследствие выброса в окружающую среду токсических веществ в результате термодеструкции различных синтетических материалов, серъёзную тревогу вызывает накопление диоксинов в прилегающих к очагам территориях. Экологическая опасность многих групп токсикантов усиливается вследствие высокой устойчивости их к воздействию физико-химических факторов окружающей среды и медленной биодеструкции.

Поступление токсических веществ в организм обуславливает нарушение обмена веществ, нарушение физико-химической структуры клеток и тканей, в результате чего возникают патологические изменения.

Вместе с тем, специфическое и неспецифическое (общетоксическое) действие ксенобиотиков зависит не только от их токсикологических характеристик, но и от активности физических и биохимических методов защиты, включающих иммунную систему и систему биотрансформации чужеродных химических соединений. Следовательно, экологические системы обладают выработанными в процессе эволюции мощными механизмами защиты от экстремальных химических воздействий, как на популяционном уровне, так и на уровне отдельных особей. Вместе с тем, в настоящее время скорость антропогенных изменений в биосфере начинает превышать возможности приспособляемости к новым условиям среды[2]

Экологическая опасность диоксинов

В последнюю четверть века к обширному перечню экологических бедствий, угрожающих цивилизации, добавилось ещё одно: опасность общепланетарного отравления среды нашего обитания диоксинами и им родственными соединениями.

Диоксины - абсолютно уникальные вещества. Специально их никто не производит, они образуются как побочные продукты высокотемпературных химических реакций с участием хлора и попадают в окружающую среду с продукцией или отходами многих технологий. Данные ксенобиотики (вещества, являющиеся чужеродными естественной среде и человеку) представляют собой группу химических соединений, характеризующуюся наличием хлора, связанного с атомами углерода[7].

В большую группу диоксинов и диоксиноподобных соединений входят как сами трициклические ароматические соединения: полихлорированные дибензо-p-диоксины (ПХДД) и дибензофураны (ПХДФ), так и полихлорированные бифенилы (ПХБ), поливинилхлорид (ПВХ) и ряд других веществ, содержащих в своей молекуле атомы хлора.

Отличительной чертой представителей этих соединений является черезвычайно высокая устойчивость к химическому и биологическому разложению; они способны сохраняться в окружающей среде, концентрироваться в биомассе и переноситься по пищевым цепям. Эти вещества являются супертоксикантами, универсальными клеточными ядами, поражающими всё живое.

В настоящее время строго доказано, что диоксины имеют исключительно техногенное происхождение, хотя и не являются целью ни одной из существующих ныне технологий. Поступление диоксинов в окружающую среду происходит преимущественно в виде микропримесей, поэтому на фоне других техногенных выбросов их негативное воздействие на живое вещество планеты долгое время оставалось незамеченным.

Однако из-за необычайных физико-химических свойств и уникальной биологической активности они могут стать одним из основных источников опасного долговременного заражения биосферы. К сожалению, диоксины и диоксиноподобные вещества непрерывно и во все возрастающих количествах генерируются цивилизацией в последние пол-века,выбрасываются в окружающую среду и накапливаются в ней. В настоящее время ситуация такова, что концентрация диоксинов еще не достигла критического значения, но при отсутствии специальных мер грозит принять необратимый характер[7].

Источники диоксинов

Источники возникновения диоксинов и пути проникновения их в живую и неживую природу весьма разнообразны. Появление диоксинов в окружающей среде обусловлено развитием разнообразных технологий, главным образом, в послевоенный период и в основном связано с производством и использованием хлорорганических соединений и утилизацией их отходов.

Для образования диоксинов необходимо сочетание трех условий: органика, хлор и высокая температура. Серъезной проблемой являются практически все термические процессы, так как термическое разложение технических продуктов, сжигание осадков сточных вод, муниципальных и других небезопасных при сгорании промышленных и бытовых отходов (например, ПХБ и изделия из ПВХ, целлюлозно-бумажная продукция и пластические массы) сопровождаются образованием экологически опасных количеств диоксинов. В особенности это касается аварийной обстановки, в частности, при пожарах на производстве. В результате термодеструкции синтетических материалов при пожарах возможны массовые острые и хронические отравления людей различными выделяющимися ксенобиотиками.

Как выяснилось, путей внесения диоксиновых ксенобиотиков только вследствие сжигания черезвычайно много. При этом в термические процессы, сопровождающиеся возникновением заметных количеств диоксинов, включаются не только хлорароматические (полихлорбензолы, ПХБ, хлорфенолы и их соли, полихлорированные дифениловые эфиры), но и хлоролефиновые соединения.

Следует отметить, что сжигание на своем дачном участке или в лесу пластмассовых бутылок, канистр, пакетов из-под сока или молока, старой мебели, пропитанной пентахлорфенолом, тоже "вносит свою лепту" в загрязнение окружающей среды диоксинами.

Есть эти вещества в выбросах металлургической и металлобрабатывающей промышленности, в пыли, уносимой ветром с могильников токсичных отходов, выхлопных газах автомобильных двигателей. Возможно возникновение диоксиновых соединений на предприятиях целлюлозно-бумажной, нефтеперерабатывающей, хлорной промышленности, при обеззараживании хлором воды, содержащей фенолы и их предшественники - лигнины, гуминовые и фульвокислоты. В этом плане экологически опасны фенолсодержащие стоки промышленных предприятий. Не менее опасны вышеописанные пожары, в частности, горение всевозможных синтетических материалов, электрооборудования. Непредсказуемые последствия для биосферы влечет за собой применение химического оружия.

По хозяйственно-территориальным признакам вышеперечисленные источники общепринято подразделять на локальные и диффузные (пространственно распределенные), а по темпам накопления в окружающей среде и объектах живой природы - на регулярные и экстремально-залповые. Диффузные источники диоксинов, с точки зрения окружающей среды, представляются более опасными. Это обусловлено двумя причинами: во-первых, изомерно-гомологическим разнообразием поступающих в систему ксенобиотиков, а во-вторых, черезвычайной трудностью обнаружения опасности до того, как она себя проявит[7].

Существует также классификация способов поступления диоксинов в биосферу. Согласно ей, выделяют три основные группы способов:

  1. функционирование несовершенных, экологически небезопасных технологий производства продукции химической, целюллозно-бумажной, металлургической промышленности. Для них всех характерны диоксинсодержащие отходы и сточные воды в период регулярной деятельности, а также большие дополнительные выбросы в случае аварийной обстановки;

  1. использование химической или иной продукции, содержащей примеси (диоксинов или их предшественников) и/или продуцирующей их в процессе использования или аварии;

  1. несовершенство и небезопасность технологии уничтожения, захоронения и преобразования отходов.

1 группа. Опасные  производства

Металлургическая промышленность

В последние годы выявлена новая группа локальных источников диоксинов. Как оказалось, они образуются на металлургических заводах, например, при электрохимическом получении никеля и магния из их хлоридов, в сталелитейных производствах, при переплаве лома железа, меди и других металлов , при производстве алюминия и т.д. ПХДД и ПХДФ находят повсюду - в аквафауне, донных отложениях, а также в сточных водах этих производств, и почве окружающих территорий, в воздушном бассейне и т.д.

Назовем также возможность образования диоксинов в других крупнотоннажных технологиях металлургической промышленности. Так, способ промышленного получения хлористого алюминия, основанный на хлорировании каолиновых брикетов, предусматривает, что хлорирование проводится в непрерывно действующей шахтной печи газообразным хлором в присутствии СО.

Целлюлозно-бумажное производство

Значительные количества диоксинов образуются в целлюлозно-бумажной промышленности, часть технологий которой восходит ко второй половине прошлого века. В основном это происходит на стадии делигнификации древесины. Поскольку лигнин (а это четверть древесной массы) содержит фенольные фрагменты, образование хлорированных фенолов и феноксифенолов - предшественников диоксинов ПХДД и ПХДФ - в процессе хлорирования лигнина неизбежно. Отбеливание целлюлозы осуществляется с использованием хлора и его соединений - оксида хлора, гипохлоригов, хлоритов и хлоратов. Кроме того, диоксины могут вноситься в отходы этого производства при обработке шлама с помощью ПХФ и его соли.

Нефтепереработка

Примеси ПХДД и ПХДФ были обнаружены впервые в выбросах нефтеочистных сооружений в 1989 г. Их связывают с процессом каталитического риформинга, а конкретно, со стадией регенерации катализатора.

Индустриальные аварии и массовые профессиональные поражения

Одним из особо опасных источников поражения людей и заражения биосферы диоксинами (ПХДД, ПХДФ и ПХБ) являются различного рода технологические инциденты в промышленности, происходящие при изготовлении продукции, в том числе нередкие аварии и взрывы. Имеются в виду производства химической продукции двух видов.

На одних предприятиях микропримеси диоксинов являются в той или иной степени неизбежным, хотя и попутным элементом технологической цепи, надежно изолированным от контакта с персоналом цехов. Лишь в момент аварии или катастрофы, которые не могли быть предсказаны и/или смоделированы заранее, эти вещества могут выйти из-под контроля и привести к массовому поражению работников.

Второй путь контакта диоксинов с производителями продукции связан с архаичностью или же несовершенством технологии, в результате чего возможны массовые поражения работников при профессиональном контакте с опасными вещестами.

2 группа. Использование  химической и иной продукции, содержащей примеси диоксинов

Хлорорганические соединения

Хлорорганические соединения находят в ежедневной практике цивилизации широчайшее применение. Соответственно возникает множество ситуаций, когда именно в процессе использования хлорорганических веществ по прямому назначению попутно переносятся или же вновь генерируются также и диоксины.

Примером контакта людей с переносимыми диоксинами может служить использование хлорорганических соединений в производстве красителей. Один из наиболее вероятных путей неожидаемого образования диоксинов - это использование хлорорганических соединений - три- и тетрахлорэтиленов, метилхлороформа, трихлорбензола и т.д. - в качестве растворителей.

Другой путь использования хлорорганических веществ в качестве растворителей - это "сухая" чистка тканей на текстильных фабриках и одежды на пунктах химчистки, выполняемая с помощью трихлорэтилена.

Еще один путь - это образование диоксинов непосредственно при производстве красителей в среде высококипящих растворителей, таких, например, как три- и дихлорбензолы.

Бумага

Среди продукции, используемой в быту, бумага относится к той, что является не источником, а лишь носителем диоксинов. Диоксины найдены в фильтровальной (в том числе в фильтрах для кофе и чая) и упаковочной бумаге, бумажных салфетках, детских пеленках, косметических тканях и т.д.

Бытовое использование бумаги неизбежно сопровождается переходом диоксинов непосредственно в пищу (кофе, молоко, жиры, чай и т.д.), а затем в организм. Особенно опасно применение диоксин-содержащей бумаги в детских пеленках, гигиенических тампонах, носовых платках и т.д., поскольку кожные покровы и слизистые ткани эффективно извлекают из нее диоксины.

Информация о работе Экотоксикологическая характеристика в объектах окружающей среды соединений хлора