Автор работы: Пользователь скрыл имя, 31 Января 2013 в 07:29, контрольная работа
Контрольная работа по экологии содержит теоретические вопросы и решение задач
Наиболее совершенные современные очистные сооружения обеспечивают освобождение сточных вод от органических загрязнений только на 85-90% и лишь в отдельных случаях - на 95%. Поэтому и после очистки необходимо 6 -12-кратное, а часто и большее разбавление их чистой водой для сохранения нормальной жизнедеятельности водных экосистем. Дело в том, что естественная самоочищающая способность водоемов и водотоков очень незначительна. Если же в водоемы и водотоки сточные воды поступают в большом объеме, а тем более и неочищенными, постепенно теряется устойчивое природное равновесие водных экосистем, нарушается их нормальное функционирование.
В последнее время разрабатываются и внедряются все более эффективные методы очистки и доочистки сточных вод после их биологической очистки с применением новейших способов обработки стоков: радиационных, электрохимических, сорбционных, магнитных и др. совершенствование технологии очистки сточных вод, дальнейшее повышение степени очистки - важнейшие задачи в области охраны вод от загрязнения.
Значительно шире следует применять доочистку очищенных сточных вод на земледельческих полях орошения (ЗПО). При доочистке сточных вод на ЗПО не затрачиваются средства на их индустриальную доочистку, создается возможность получать дополнительную сельскохозяйственную продукцию, значительно экономится вода, так как уменьшается забор свежей воды для орошения и отпадает необходимость в расходовании воды для разбавления сточных вод. При использовании на ЗПО городских сточных вод содержащиеся в них питательные вещества и микроэлементы усваиваются растениями быстрее и полнее, чем искусственные минеральные удобрения.
К числу важных задач относится также предотвращение загрязнения водоемов пестицидами и ядохимикатами. Для этого требуется ускорить проведение противоэрозионных мероприятий, создать пестициды, которые разлагались бы в течение 1-3 недель без сохранения ядовитых остатков в культуре. До решения же этих вопросов необходимо ограничить сельскохозяйственное использование прибрежных зон вдоль водотоков или не применять в них пестициды. Большего внимание требует и создание водоохранных зон.
В защите водных источников от загрязнения важное значение имеет введение платы за сброс сточных вод, создание комплексных районных схем водопотребления, водоотведения и очистки сточных вод, автоматизация контроля за качеством воды в водоисточниках и разработка методов управления качеством. Следует отметить, что комплексные районные схемы позволяют перейти к повторному и многократному использованию воды, эксплуатации общих для района очистных сооружений, а также автоматизировать процессы управления работой водопровода и канализации.
В предотвращении загрязнения
природных вод велика роль охраны
гидросферы, поскольку приобретенные
гидросферой отрицательные свойства не только видоизменяют
водную экосистему и угнетающе действуют
на ее гидробиологические ресурсы, но
и разрушают экосистемы суши, ее биологические
системы, а также литосферу.
Необходимо подчеркнуть, что одной из
радикальных мер борьбы с загрязнением
служит преодоление укоренившейся традиции
рассматривать водные объекты в качестве
приемников сточных вод. Там, где это возможно,
следует исключить в одних и тех же водотоках
и водоемах либо забор воды, либо сброс
сточных вод.
Задание. Определить годовое количество и вес люминесцентных ртутьсодержащих ламп, подлежащих замене и утилизации в офисных помещениях или уличном освещении, для условий, представленных в табл.1 .
Разработать мероприятия по складированию и утилизации отработанных люминесцентных ламп.
Исходные данные для расчета
Номер задания |
Назначение освещения |
Тип ламп |
Количество используемых ламп |
Срок службы лампы |
Число часов работы лампы в году |
Вес одной лампы |
n |
q |
t |
т | |||
шт |
час |
час |
кг | |||
3 |
Уличное освещение |
ДНАТ-250 |
160 |
14000 |
2650 |
0,25 |
Решение
где n - количество ламп, используемых в офисных помещениях, шт;
q - срок службы лампы, час;
t - число часов работы лампы в году, час.
N= (160/14000)*2650 ≈ 30 шт./год
, кг
т - вес одной лампы, кг
М= 30*0,25= 7,5 кг.
3. Мероприятия по складированию и утилизации отработанных люминесцентных ламп.
Правительством Москвы выпущено распоряжение от 19 мая 2010 г. № 949-РП «Об организации работ по централизованному сбору, транспортировке и переработке отработанных ртутьсодержащих люминесцентных и компактных люминесцентных ламп и оплате этих работ». Предприятием «ЭКОТРОМ» разработана и согласована с ТУ Роспотребнадзора по г. Москве «Инструкция о порядке сбора, накопления и передаче на утилизацию вышедших из употребления ртутьсодержащих энергосберегающих компактных люминесцентных ламп».
Так как компактные люминесцентные лампы более хрупкие, чем обычные трубчатые, то для их сбора рекомендуются легко переносимые небольшие контейнеры с полиэтиленовым вкладышем, обеспечивающим герметичность упаковки. На каждом пункте сбора необходимо иметь контейнер для целых ламп, контейнер для поврежденных ламп и демеркуризационный комплект для устранения возможных ртутных загрязнений, снабженный подробной инструкцией согласованной с Роспотребнадзором. По нашим оценкам для оснащения на первом этапе имеющихся пунктов приема люминесцентных ламп в ДЭЗах (управляющих компаниях) и предполагаемых пунктов шаговой доступности в магазинах электротоваров и бытовой техники г. Москвы потребуется 7-7,5 тыс. оборотных контейнеров и 1750 демеркуризационных комплектов. НПП «ЭКОТРОМ» имеет возможность поставить контейнеры и комплекты в организованные пункты приема.
Транспортные
контейнеры и демеркуризационный комплект,
выпускаемые предприятием ООО «НПП «ЭКОТРОМ».
Характеристики транспортного контейнера:
диаметр 350 мм,
высота 500 мм, вес 3,5-4 кг, цветная маркировочная
этикетка
с правилами сбора, полиэтиленовый вкладыш
(мешок).
Логистика доставки люминесцентных ламп на утилизацию от предприятий, организаций и из жилищного комплекса Москвы достаточно хорошо отлажена. Более сложное – это изменить отношение основной массы населения к необходимости сдавать энергосберегающие компактные люминесцентные лампы на утилизацию.
Задание. Определить годовое количество загрязняющих веществ, выбрасываемых в атмосферу, при движении автомобилей по дорогам. В качестве загрязняющих веществ принять угарный газ (СО), углеводороды (несгоревшее топливо СН), окислы азота (NOх), сажу (С) и сернистый газ (SO2).
Исходные данные для расчета принять в соответствии с табл. 2 и табл. 3
Таблица 2
Исходные данные для расчета
Номер задания |
Марка автомобиля |
Тип двигателя внутреннего сгорания (ДВС) |
Число дней работы в году |
Суточный пробег автомобиля | |
Холодный период ( Х) |
Теплый период (Т) | ||||
L | |||||
дн |
дн |
км | |||
3 |
Зил 130 |
Б |
200 |
100 |
150 |
Примечание: Б, Д – бензиновый и дизельный двигатели соответственно
Таблица 3
Пробеговые выбросы
автомобилями отечественного производства
|
Тип ДВС |
Удельные выбросы загрязняющих веществ , г/км | |||||||||
СО |
СН |
NOх |
C |
SO2 | |||||||
Т |
Х |
Т |
Х |
Т |
Х |
Т |
Х |
Т |
Х | ||
ЗИЛ 130 |
Б |
29,7 |
37,3 |
5,5 |
6,9 |
0,8 |
0,8 |
- |
- |
0,15 |
0,19 |
Примечание: Т, Х- теплый и холодный периоды года соответственно.
Б, Д – бензиновый и дизельный двигатели соответственно
Решение
Годовое количество загрязняющих веществ при движении автомобилей по дорогам рассчитывается отдельно для каждого наименования (СО, СН, NOх, С и SO2) по формуле [8]
где – пробеговые выбросы загрязняющих веществ при движении автомобилей в теплый и холодный периоды года, г/км. |
L – суточный пробег автомобиля, км; |
– количество рабочих дней в году в теплый и холодный периоды года соответственно, дн. |
МСО = (29,7*100+37,3*200)*150*10-6 = 1564500*10-6 = 1,5645 т/год
МСН = (5,5*100+6,9*200)*150*10-6 = 289500*10-6 = 0,2895 т/год
МNOx = (0,8*100+0,8*200)*150*10-6 = 36000*10-6 = 0,0036 т/год
MSO2 = (0,15*100+0,19*200)*150*10-6 = 7950*10-6 = 0,00795 т/год
Задание. Определить годовое количество пыли, выбрасываемой в атмосферу при погрузке горной породы в автосамосвал БеЛАЗ 548.
Исходные данные для расчета принять в соответствии с табл. 4, 5, 6, 7
Таблица 4
Исходные данные для расчета
Номер задания |
Влажность горной массы |
Скорость ветра в районе работ |
Высота разгрузки горной массы |
Часовая производительность |
Время смены |
Число смен в сутки |
Количество рабочих дней в году |
φ |
V |
Н |
Q |
||||
% |
м/с |
м |
т/ч |
час |
шт |
дн | |
3 |
4,2 |
4,5 |
1 |
920 |
8 |
2 |
210 |
Зависимость величины коэффициента К1 от влажности горной породы
Влажность породы (φ), % |
Значение коэффициента К1 |
3,0 – 5,0 |
1,2 |