Контрольная работа по «Нетрадиционные источники энергии»

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 15:41, контрольная работа

Описание работы

В понятие возобновляемые источники энергии (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.
Принято условно разделять ВИЭ на две группы:
Традиционные: гидравлическая энергия, преобразуемая в используемый вид энергии ГЭС мощностью более 30 МВт; энергия биомассы, используемая для получения тепла традиционными способами сжигания (дрова, торф и некоторые другие виды печного топлива); геотермальная энергия.

Файлы: 1 файл

НИЭ КР.doc

— 266.50 Кб (Скачать файл)

Министерство  образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ  ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 

Кафедра экономики  и менеджмента

 

 

 

 

 

 

Контрольная работа

по дисциплине «Нетрадиционные источники энергии»

 

 

 

 

Выполнила:

Студентка гр. ЭУПзу- 08                                                                        Е.Е. Башмачникова

Проверила:

 Агеева И.Л.

          

 

 

Иркутск, 2011

 

Основные современные виды возобновляемых источников энергии.

    

     В понятие возобновляемые источники энергии (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.

     Принято условно разделять ВИЭ на две группы:

  • Традиционные: гидравлическая энергия, преобразуемая в используемый вид энергии ГЭС мощностью более 30 МВт; энергия биомассы, используемая для получения тепла традиционными способами сжигания (дрова, торф и некоторые другие виды печного топлива); геотермальная энергия.
  • Нетрадиционные: солнечная, ветровая, энергия морских волн, течений, приливов и океана, гидравлическая энергия, преобразуемая в используемый вид энергии малыми и микроГЭС, энергия биомассы, не используемая для получения тепла традиционными методами, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.

     Экономический потенциал возобновляемых источников энергии в мире в настоящее время оценивается в 20 млрд. т.у.т. в год, что в два раза превышает объем годовой добычи всех видов ископаемого топлива. И это обстоятельство указывает путь развития энергетики ближайшего будущего.

     На территории России сосредоточено 45% мировых запасов природного газа, 13% - нефти, 23% - угля, 14% - урана. Такие запасы топливно-энергетических ресурсов могут обеспечить потребности страны в тепловой и электрической энергии в течение сотен лет. Однако фактическое их использование обусловлено существенными трудностями и опасностями, не обеспечивает потребности многих регионов в энергии, связано с безвозвратными потерями топливно-энергетических ресурсов (до 50%), угрожает экологической катастрофой в местах добычи и производства топливно-энергетических ресурсов. Природа может не выдержать такого испытания. Около 22-25 млн. человек проживают в районах автономного энергоснабжения или ненадежного централизованного энергоснабжения, занимающих более 70% территории России.

     Экономический потенциал ВИЭ на территории России, выраженный в тоннах условного топлива (т.у.т.), составляет по видам источников: энергия Солнца - 12,5 млн., энергия ветра - 10 млн., тепло Земли - 115 млн., энергия биомассы - 35 млн., энергия малых рек - 65 млн., энергия низкопотенциальных источников тепла - 31.5,млн., всего - 270 млн. т.у.т.

     Эти источники по объему составляют примерно 30% от объема потребления топливно-энергетических ресурсов в России, составляющего 916 млн. т.у.т. в год, что создает благоприятные перспективы решения энергетических, социальных и экологических проблем в будущем.

     По сути, широкое использование возобновляемых источников энергии соответствует высшим приоритетам и задачам энергетической стратегии России.

     В целом использование НВИЭ в мире приобрело ощутимые масштабы и устойчивую тенденцию к росту.

     Различные виды НВИЭ находятся на разных стадиях освоения. Как это ни парадоксально, наибольшее применение получил самый изменчивый и непостоянный вид энергии - ветер. Суммарная мировая установленная мощность крупных ВЭУ и ВЭС, по разным оценкам, составляет от 10 до 20 ГВт. Кажущийся парадокс объясняется тем, что удельные капиталовложения в ВЭУ ниже, чем при использовании большинства других видов НВИЭ. Растет не только суммарная мощность ветряных установок, но и их единичная мощность, превысившая 1 МВт. Во многих странах возникла новая отрасль - ветроэнергетическое машиностроение. По-видимому, и в ближайшей перспективе ветроэнергетика сохранит свои передовые позиции. Мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия.

     Второе место по объему применения занимает геотермальная энергетика. Суммарная мировая мощность ГеоТЭС составляет не менее 6 ГВт. Они вполне конкурентоспособны по сравнению с традиционными топливными электростанциями. Однако ГеоТЭС географически привязаны к месторождениям парогидротерм или к термоаномалиям, которые распространены отнюдь не повсеместно, что ограничивает область применения геотермальных установок. Наряду с ГеоТЭС, широкое распространение получили системы геотермального теплоснабжения.

     Далее следует солнечная энергия. Она используется в основном для производства низкопотенциального тепла для коммунально-бытового горячего водоснабжения и теплоснабжения. Преобладающим видом оборудования здесь являются так называемые плоские солнечные коллекторы. Их общемировое производство составляет, по нашим оценкам, не менее 2 млн м2 в год, а выработка низкопотенциального тепла за счет солнечной энергии достигает 5 106 Гкал. Все активнее идет преобразование солнечной энергии в электроэнергию. Здесь используются два метода - термодинамический и фотоэлектрический, причем последний лидирует с большим отрывом.  

     Основными направлениями широкомасштабного развития солнечной энергии в мире являются:

- преобразование солнечной энергии в низкопотенциальное тепло и использование последнего в качестве источника в системах теплоснабжения жилых, коммунально-бытовых объектов, общественных и производственных зданий потребляющих энергию такого же температурного потенциала;

- преобразование  солнечной энергии в электричество  с помощью фотоэлектрических  и термодинамических преобразователей.

Наряду с  указанными двумя основными направлениями  солнечная энергия может быть использована в сельскохозяйственном производстве (для обогрева теплиц и парников, сушки фруктов и овощей, опреснения соленых вод) и технологических процессах (исследовательские высокотемпературные солнечные печи, синтез жаропрочных и тугоплавких материалов и изделий с заданными свойствами и т.п.).

     Значительное развитие получило направление, связанное с использованием низкопотенциального тепла окружающей среды (воды, грунта, воздуха) с помощью теплонасосных установок (ТНУ). В ТНУ при расходе единицы электрической энергии производится 3-4 эквивалентные единицы тепловой энергии, следовательно, их применение в несколько раз выгоднее, чем прямой электрический нагрев. Они успешно конкурируют и с топливными установками.

     Не менее интенсивно развивается использование энергии биомассы. Последняя может конвертироваться в технически удобные виды топлива или использоваться для получения энергии путем термохимической (сжигание, пиролиз, газификация) и (или) биологической конверсии. При этом используются древесные и другие растительные, а также органические отходы, в том числе городской мусор, отходы животноводства и птицеводства. При биологической конверсии конечными продуктами являются биогаз и высококачественные экологически чистые удобрения. Это направление имеет значение не только с точки зрения производства энергии. Пожалуй, еще большую ценность оно представляет с позиций экологии, так как решает проблему утилизации вредных отходов.

     В последние годы наблюдается возрождение интереса к созданию и использованию малых ГЭС. Они получают во многих странах все большее распространение на новой, более высокой технической основе, связанной, в частности, с полной автоматизацией их работы при дистанционном управлении.

     Гораздо меньше развито практическое применение приливной энергии. В мире существует только одна крупная приливная электростанция (ПЭС) мощностью 240 МВт (Ранс, Франция). Еще менее развито использование энергии морских волн. Этот способ использования НВИЭ находится на стадии начального экспериментирования.

     Таково в настоящее время положение с использованием НВИЭ в мире. В России же практическое их применение значительно отстает от масштабов, достигнутых в других странах. И это несмотря на такие благоприятные предпосылки, как практически неограниченные ресурсы НВИЭ, достаточно высокий научно-технический и промышленный потенциал в данной области.

     Согласно прогнозам, в течение следующих десятилетий значение доли ВИЭ в общем процессе энергопроизводства будут возрастать. Ожидается, что в XXI веке первенство на энергорынке среди ВИЭ будет принадлежать ветроэнергетике и фотоэнергетике, которые в данное время активно развиваются. В 2008 году установленная мощность ветродвигателей составила более 100 ГВт, а фотоэлектрических модулей - более 10 ГВт. В то же время очевиден явный рост интереса во всем мире к фотоэнергетике, хотя её сегодняшняя себестоимость 2,5 - 3 раза выше себестоимости традиционной энергетики.

     Согласно прогнозу Мирового Энергетического Агентства, к середине нынешнего столетия доля ВИЭ в общем энергобалансе планеты должна достичь 40%. При таком соотношении традиционных и ВИЭ может произойти стабилизация парникового газа в атмосфере к 2050 г. с дальнейшим снижением к 2100 году.

     Программы развития возобновляемых источников энергии приняты и выполняются сейчас более чем в 70 странах мира. В 2007 году рынок только по реализации фотоэлектричества составил более 11 млрд. долларов США и к 2015 году ожидается увеличение до более 50 млрд долларов.

     Необходимо отметить, что при сравнении различных источников энергии цена является ключевым параметром. ВИЭ зачастую считаются более дорогостоящими по сравнению с ископаемым топливом. Такое заключение обычно основывается на неправильной оценке затрат. Когда мы оплачиваем счет за электроэнергию или заполняем бак своего автомобиля, мы обычно оплачиваем неполную цену за энергию. Существуют много скрытых затрат, связанных с использованием энергии. Очень трудно оценить затраты, связанные с экологическим загрязнением, а некоторые из них даже трудно определить. Тем не менее, проведенные исследования доказывают их существенные размеры.

 

Энергия океанических течений. Энергия моря.

    

     Океан – мощный терморегулятор планеты. Благодаря большой массе воды и её высокой теплоёмкости он аккумулирует солнечное тепло, гораздо больше чем суша. Воды океана находятся в беспрерывном движении. Морские течения переносят с собой огромные количества тепла и холода и тем самым выравнивают межсезонную и межширотную изменчивость климата. Известный климатолог и океанолог А.И. Войеков, называя морские течения регуляторами температуры, трубами водяного отопления земного шара, считал, что воздушные течения далеко не в такой степени содействуют выравниванию температур между экватором и полюсами, как морские течения.

     Океан – гигантский аккумулятор и трансформатор солнечной энергии, преобразуемой в энергию течений, тепла и ветров. Энергия приливов – результат действия приливообразующих сил Луны и Солнца.

     Энергетические ресурсы океана представляют большую ценность как возобновляемые и практически неисчерпаемые. Опыт эксплуатации уже действующих систем океанской энергетики показывает, что они не приносят какого-либо ощутимого ущерба океанской среде. При проектировании будущих систем океанской энергетики тщательно исследуется их воздействие на экологию.

     Значение океанских течений заключается прежде всего в перераспределении на Земле солнечного тепла: теплые течения способствуют повышению температуры, а холодные понижают ее. Огромное влияние оказывают течения на распределение осадков на суше. Территории, омываемые теплыми водами, всегда имеют влажный климат, а холодными — сухой; в последнем случае дожди не выпадают, увлажняющее значение имеют только туманы.

     Среди меридиональных течений наиболее известен Гольфстрим. Он переносит в среднем каждую секунду около 75 млн. тонн воды. Для сравнения можно указать, что самая полноводная река мира Амазонка переносит каждую секунду лишь 220 тысяч тонн воды. Гольфстрим переносит тропические воды к умеренным широтам, во многом определяя климат, а значит, и жизнь Европы. Именно благодаря этому течению Европа получила мягкий, теплый климат. Из зональных течений наиболее мощным является течение Западных ветров. На огромном пространстве Южного полушария у побережья Антарктиды нет сколько-нибудь значительных массивов суши. Над всем этим пространством преобладают сильные и устойчивые западные ветры. Они интенсивно переносят воды океанов в восточном направлении, создавая самое мощное во всем Мировом океане течение Западных ветров.

     Важной закономерностью течений в открытом океане является то, что их направление не совпадает с направлением ветра. Оно отклоняется вправо в Северном полушарии и влево в Южном полушарии от направления ветра на угол до 45°.

      Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э.Циолковским.

     В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую.

     В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Информация о работе Контрольная работа по «Нетрадиционные источники энергии»