Автор работы: Пользователь скрыл имя, 26 Мая 2013 в 17:09, реферат
Азотный цикл – геобиохимичный цикл, описывающий процесс замкнутых взаимосвязанных путей, которыми азот циркулирует через экосистемы и в земной биосфере.
В круговороте азота можно выделить следующие основные биохимические процессы: 1) гниение, или аммонификация; 2) нитрификация; 3) денитрификация и 4) фиксация атмосферного азота.
1) Гниение, или аммонификация, - это превращение органического азота в минеральный азот, разложение сложного белка до аммиака. Поэтому этот процесс и называется аммонификацией. Он проходит в несколько этапов в результате жизнедеятельности различных групп микроорганизмов, главным образом бактерий, а также актиномицетов и плесневых грибов.
1. Введение………………………………………………………………………..3
2. Круговорот азота и микробы, участвующие в нем………………………….5
3. Роль почвенных микроорганизмов в природе…………………………….....9
4. Заключение……………………………………………………………………19
5. Список используемых источников……………………………………….....20
Содержание
1. Введение…………………………………………………………
2. Круговорот азота и микробы, участвующие в нем………………………….5
3. Роль почвенных
микроорганизмов в природе……………
4. Заключение……………………………………………………
5. Список используемых
источников……………………………………….....
Введение
Азотный цикл – геобиохимичный цикл, описывающий процесс замкнутых взаимосвязанных путей, которыми азот циркулирует через экосистемы и в земной биосфере.
В круговороте азота можно выделить следующие основные биохимические процессы: 1) гниение, или аммонификация; 2) нитрификация; 3) денитрификация и 4) фиксация атмосферного азота.
1) Гниение, или аммонификация, - это превращение органического азота в минеральный азот, разложение сложного белка до аммиака. Поэтому этот процесс и называется аммонификацией. Он проходит в несколько этапов в результате жизнедеятельности различных групп микроорганизмов, главным образом бактерий, а также актиномицетов и плесневых грибов.
2) Конечные продукты разложения белка и других азотных веществ - аммиачные соли - уже сами по себе могут усваиваться растениями. Однако наиболее легко усвояемыми для растений являются соли азотной кислоты. Процесс окисления солей аммиака в соли азотной кислоты называется нитрификацией (nitrum - селитра).
3) Кроме процесса нитрификации в природе могут возникать и противоположные процессы разложения азотнокислых солей вплоть до образования газообразного азота, уходящего обратно в атмосферу. Такие процессы восстановления нитратов с образованием как конечного продукта молекулярного азота называются денитрификацией. Денитрификацию вызывают микроорганизмы, широко распространенные в почве, навозе, на поверхности и корнях растений. Это факультативные анаэробы. Попадая в анаэробные условия или даже в условия недостаточного притока кислорода в среде, денитрифицирующие бактерии отщепляют кислород из азотно- или азотистокислых солей, восстанавливая их до азота. Отщепленным кислородом они окисляют безазотистые органические соединения, получая таким образом необходимую им энергию. Эту так называемую прямую денитрификацию вызывают Bact denitrificans, Bact. fluorescens, синегнойная палочка, палочка Штуцера, Thiobac. denitrificans и др.
4) Огромные запасы газообразного азота совершенно недоступны для высших растений и животных. Вовлечение его в биогенный круговорот совершается двумя путями. В первом случае азот превращается в двуокись азота NO2 под влиянием электрических разрядов, происходящих во время гроз, или в результате фотохимического окисления. Двуокись азота растворяется в воде, в почве и окисляется дальше. Этим путем за год 1 м2 поверхности получает 30 мг NO3.
Запасы азота в природе очень велики. Он входит в состав всех организмов на Земле. Общее содержание его в организмах составляет более 25 млрд тонн, большое количество азота находится также в почве. Но еще более грандиозен запас азота в атмосфере: над каждым гектаром почвы поднимается столб воздуха, содержащий около 80 000 тонн молекулярного азота.
Ежегодно на образование вновь вырастающих растений требуется около 1,5 млрд тонн азота в форме, доступной для усвоения растениями. Имеющегося в воздухе и почве азота хватило бы для обеспечения урожая, даже при одностороннем использовании, на несколько миллионов лет. Однако растения часто дают низкие урожаи именно из-за недостатка азота в почве. Это объясняется тем, что только небольшая группа азотистых соединений может быть быстро усвоена растениями. Не только свободный азот, но и многие формы связанного азота не могут служить источником азотного питания для растений.
Азот, поступающий в виде белковых веществ в почву вместе с остатками растений и животных, совсем не годится для этих целей, он должен быть подвергнут минерализации, а образующийся при этом аммиак должен быть окислен в соли азотистой и азотной кислот. В основе процессов круговорота азота лежат следующие биохимические процессы: гниение белков, разложение мочевины, нитрификация, денитрификация и фиксация атмосферного азота.
Гниение, или аммонификация белков, — микробиологический процесс, при котором под воздействием гнилостных микроорганизмов происходит гидролитическое расщепление белков, поступающих в почву с трупами животных и отмирающими растениями, с образованием промежуточных продуктов (альбумоз, пептонов, амино- и амидокислот), а также дурно пахнущих веществ — индола, сероводорода, меркаптана, летучих жирных кислот.
Конечным продуктом гидролиза белков и дезаминирования аминокислот является аммиак, почему этот процесс и называется аммонификацией белка. Таким образом, при гниении происходит минерализация белковых веществ, которая в зависимости от химического состава белков субстрата, вида гнилостных бактерий и условий их жизнедеятельности может быть полной или не доведенной до конца. При полной минерализации белка образуются вода, диоксид углерода, аммиак, сероводород и минеральные соли. При широком доступе кислорода продукты гидролиза белков подвергаются полному окислению, зловонных веществ образуется значительно меньше, чем при анаэробных условиях. Такой процесс называется тлением.
Гниение -- преимущественно
анаэробный процесс, при котором
полного окисления некоторых
продуктов, например жирных кислот, не происходит. Гнилостные микробы широко
распространены в почве, воде, воздухе,
в животных и растительных организмах.
Поэтому любой продукт, не защищенный
от них, быстро подвергается гниению. Его
вызывают как анаэробные, так и аэробные
микроорганизмы, причем они могут действовать
и преемственно, и одновременно. Наиболее
энергичными возбудителями гниения, сопровождающегося
глубоким распадом белка и образованием
азотистых и безазотистых соединений
(индола, скатола, жирных кислот и др.),
являются Bacillus mycoides, B.
Процессы гниения протекают только при наличии условий, благоприятных для жизнедеятельности их возбудителей (влажность, температура и т. п.). В сухой песчаной почве трупы подвергаются мумификации (высушиванию без гниения). Гнилостные процессы происходят и в организме человека, в частности в кишечнике; причиной их являются Е.со1i и другие микробы. По мнению И. И. Мечникова, продукты гниения (скатол, индол и др.), постоянно образующиеся в организме, вызывают хроническую интоксикацию и являются одной из причин преждевременного старения.
Гнилостные процессы протекают также при газовой гангрене: ткани, омертвевшие под влиянием образуемых возбудителями этой болезни экзотоксинов, заселяются гнилостными аэробными и анаэробными бактериями и подвергаются распаду. Некоторые гнилостные процессы используются в промышленности с полезной целью, например при выработке кожи для отделения от нее шерсти -- швицевании.
Исключительное значение процессов гниения заключается в том, что они играют важную роль в естественном самоочищении почвы и воды. Этим пользуются для строительства специальных очистных сооружений (полей ассенизации, орошения и т. п.), для биологической переработки и обезвреживания фекальных нечистот и сточных вод, содержащих много мертвых белковых субстратов. Гниение ведет к обогащению почвы азотистыми продуктами.
Следующим важным этапом круговорота азота, вслед за образованием NH3, является процесс нитрификации, т. е. окисление NH3 вначале в азотистую, а затем в азотную кислоту, соли которых наиболее пригодны для азотного питания растений. Процесс нитрификации вызывается двумя группами открытых С. Н. Виноградским нитрифицирующих бактерий. Нитрозобактерии окисляют NH3 до азотистой кислоты, а нитробактерии окисляют азотистую кислоту в азотную.
Нитрифицирующие бактерии -- строгие аэробы, хемолитотрофы. Энергию окисления они используют для восстановления СО2 в гексозу. Благодаря нитрифицирующим бактериям в почве могут образовываться огромные скопления солей азотной кислоты в виде селитры (в Чили, Перу). Завершая процесс минерализации белковых веществ, нитрифицирующие бактерии играют исключительно важную роль и в процессах самоочищения почвы и воды, и в санитарно-гигиенических устройствах (поля орошения и т. п.). Таким образом, нитрифицирующие бактерии способствуют повышению урожайности почвы благодаря накоплению в ней азотнокислых солей.
Однако в почве происходят и противоположные процессы, т.е. денитрификации, или восстановлений микроорганизмами солей азотной кислоты в соли азотистой кислоты и в другие простые азотистые соединения, вплоть до свободного азота, который, уходит в атмосферу.
Способностью восстанавливать нитраты в нитриты обладает большое количество видов бактерий и грибов.
Денитрифицирующие бактерии (в частности, некоторые виды Pseudomonas) в анаэробных условиях используют денитрификацию как основную форму дыхания. Для них соли азотной и азотистой кислот служат источниками азота. Энергию для своей специфической деятельности денитрифицирующие бактерии получают из органических веществ, которыми богата почва. Денитрифицирующие бактерии наносят вред сельскому хозяйству, так как способствуют обеднению почвы минеральным азотом и переходу свободного азота в атмосферу. Особенно энергично процессы денитрификации развиваются в слежавшейся, плохо аэрируемой почве. Однако убыль азота из почвы, вызванная активностью денитрифицирующих бактерий, компенсируется деятельностью свободноживущих аэробных и анаэробных и клубеньковых азотфиксирующих бактерий. Более 90% азота связывают азотфиксирующие бактерии: на каждый гектар почвы ежегодно от 25 до 300 кг азота привносят только они.
Так, при самом активном участии многих видов микроорганизмов, в природе происходит непрерывный круговорот азота, поддерживающий существование жизни на Земле.
Роль почвенных микроорганизмов в круговороте азота
а. Гниение, или аммонификация, - это превращение органического азота в минеральный азот, разложение сложного белка до аммиака. Поэтому этот процесс и называется аммонификацией. Он проходит в несколько этапов в результате жизнедеятельности различных групп микроорганизмов, главным образом бактерий, а также актиномицетов и плесневых грибов.
Белок и другие азотистые
органические вещества всегда содержатся
в больших количествах в
Если процесс идет в аэробных условиях, то разложение идет до конечных продуктов, причем используется весь запас энергии белка. В анаэробных условиях расщепление белков идет менее глубоко. Если в составе белков имеется сера, то она освобождается в виде сероводорода или меркаптанов, имеющих неприятный запах. Из аминокислот ароматического ряда образуются фенол и дурно пахнущие индол и скатол.
Образовавшийся таким образом аммиак, во-первых, частично идет на синтез азотистых веществ тела самих микробов. Во-вторых, большая часть накапливается в почве, причем интенсивность накопления его в почве зависит от определенного более узкого соотношения углерода и азота (меньше чем 25:1), так как азот идет только на синтез белка, а углерод, кроме синтеза, еще расходуется в процессе дыхания.
Микроорганизмы, участвующие в разложении белка, широко распространены в природе, во всех почвах и водоемах. Обычно здесь наблюдается определенная последовательность разложения белка. Сначала аммонификаторы разлагают белок с образованием аммиака, а затем нитрификаторы окисляют аммиак до азотной кислоты.
Из аэробных бактерий сюда относятся: спороносные - Бас. mycoides, Вас. mesentericus (картофельная палочка), Вас. subtilis (сенная палочка) и др.; неспороносные - Bact. prodigiosum (чудесная палочка), имеющая красный пигмент, Bact. fluorescens, выделяющая зеленоватый пигмент, и др. Из факультативных анаэробных - протейная палочка, одна из вызывающих наиболее глубокий распад белков (NH3, СН4, СО2, Н2О и др.), кишечная палочка, в обилии живущая в кишечнике и фекалиях человека и животных. К анаэробным бактериям относятся Вас. sporogenes, Вас. putrificus, также часто встречающиеся в кишечнике и фекалиях. Проникая после смерти человека и животных через стенку кишечника в полости тела, они вызывают быстрое зловонное разложение трупов.
Гнилостные процессы, происходящие
в кишечнике, не приводят к полной
минерализации азотистых
б. Разложение мочевины. Человек и животные выделяют с мочой большое количество связанного азота в виде мочевины - диамида угольной кислоты CO(NH2)2. Человек за сутки выделяет 30-50 г мочевины, а все человечество - около 200 тыс. т. Попадая в почву, мочевина подвергается разложению особыми уробактериями, имеющими фермент уреазу. Мочевина превращается ими в нестойкую углеаммиачную соль, разлагающуюся до аммиака и углекислоты.
В почве связанный азот содержится в основном в форме перегнойных, или гумусовых, веществ. Аммонификация их микроорганизмами также имеет место в почве, но процесс этот происходит очень медленно. Считают, что в умеренном климате в течение года разлагается только 1-3% общего запаса гумуса.
2. Нитрификация
Конечные продукты разложения белка и других азотных веществ - аммиачные соли - уже сами по себе могут усваиваться растениями. Однако наиболее легко усвояемыми для растений являются соли азотной кислоты. Процесс окисления солей аммиака в соли азотной кислоты называется нитрификацией (nitrum - селитра).