Круговорот веществ в биосфере

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 07:04, контрольная работа

Описание работы

Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. В зависимости от движущей силы внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты.

Содержание работы

1. Круговорот веществ в биосфере. 2
1.1. Значение круговоротов в биосфере 4
2. Понятие загрязнения окружающей среды. 12
2.1. Химическое загрязнение 12
2.2. Физическое загрязнение 14
2.3. Биологическое загрязнение 14
3. Защита литосферы. Меры по защите почв от деградации 15
Список литературы 18

Файлы: 1 файл

Экология.doc

— 96.50 Кб (Скачать файл)

 

Министерство  образования и науки Российской Федерации

Федеральное государственное  автономное образовательное учреждение

высшего профессионального  образования

«Российский государственный  профессионально-педагогический университет»

Инженерно-педагогический институт

Кафедра общей  химии

 

 

 

КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ

«Экология»

Вариант №10 (11,54,71)

 

 

 

                   Исполнитель:

                   Студентка группы ЗТГ-518   Л.Н.Большедворова

                   Руководитель:

 

 

 

 

 

Екатеринбург 2013

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Круговорот веществ в биосфере.

Круговорот  веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. В зависимости от движущей силы внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты.

Геологический круговорот (большой круговорот веществ  в природе) - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.

К эндогенным процессам  относятся: тектонические движения, землетрясения, магматизм, матаморфизм. Эти процессы происходят под влиянием внутренней энергии Земли.

Экзогенные  процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. Эти процессы протекают под влиянием внешней энергии Солнца.

Эндогенные  и экзогенные процессы противоположны по своему действию. Первые ведут к  образованию крупных форм рельефа, вторые - к их сглаживанию.

Магматические горные породы в результате выветривания преобразуются в осадочные. В  подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.

Биологический круговорот - круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биологический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез.

В биогеохимических круговоротах следует различать  две части:

1. Резервный фонд - это часть вещества, не связанная с живыми организмами;

2. Обменный фонд - значительно меньшая часть вещества, которая связана прямым обменом  между организмами и их непосредственным  окружением.

В зависимости  от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1. Круговороты  газового типа с резервным  фондом веществ в атмосфере  и гидросфере (круговороты углерода, кислорода, азота);

2. Круговороты  осадочного типа с резервным  фондом  в земной коре (круговороты фосфора, кальция, железа).

Круговороты газового типа более совершенны, так как  обладают большим обменным фондом, а значит способны к быстрой саморегуляции.

Круговороты осадочного типа менее совершенны, они более  инертны, так как основная масса  вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путём извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

С появлением человека возник антропогенный круговорот - круговорот веществ, движущей силой  которого является деятельность человека. В нём можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей.

Геологический и биологический круговороты  в значительной степени замкнуты, антропогенный - нет. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды - основным причинам всех экологических проблем человечества.

    1. Значение круговоротов в биосфере

 

Наиболее значимыми для функционирования биосферы являются круговороты основных элементов, входящих в состав живого вещества: углерода, кислорода, азота, фосфора и серы, поскольку они являются компонентами для построения основных молекул живого вещества – углеводов, липидов, белков и нуклеиновых кислот. Эти круговороты создаются живым веществом и одновременно поддерживают жизнедеятельность самих живых организмов. В процессе фотосинтеза за год зелёными растениями потребляется 480 млрд. т вещества, выделяется в атмосферу 250 млрд. т свободного кислорода. При этом создаётся 240 млрд. т живого вещества, а в круговорот вовлекается 1 млрд. т азота, 260 млн. т фосфора, 200 млн. т серы и т.п.

 

За время существования  биосферы свободный кислород атмосферы  обновлялся не менее миллиона раз, а воды Мирового океана прошли через биогенный цикл не менее 300 раз.

 

Углерод в биосфере часто представлен наиболее подвижной формой – углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность. Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа и угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далёкие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления превращается в нефть, природный газ и уголь, во что именно – зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода.

 

По второму пути миграция углерода осуществляется созданием  карбонатной системы в различных водоёмах, где СО2 переходит в Н2СО3, НСО31-, СО32-. Затем с помощью растворённого в воде кальция (реже магния) происходит осаждение карбонатов СаСО3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует ещё ряд малых его круговоротов на поверхности суши и в океане.

В пределах суши, где имеется  растительность, углекислый газ атмосферы  поглощается в процессе фотосинтеза  в дневное время. В ночное время  часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием СО2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

Кислород – наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели. В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной  земной атмосферы является побочным продуктом процесса фотосинтеза  зеленых растений и его общее  количество отражает баланс между продуцированием  кислорода и процессами окисления  и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определённого уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

Азот. Основная часть атомов азота находится в воздухе, который на 78 % состоит из одноимённого газа (N2). Однако растения не могут усваивать его непосредственно; для этого азот должен входить в состав ионов аммония (NH4+) или нитрата (NH3-). К счастью, некоторые бактерии и ряд сине-зелёных водорослей способны превращать газообразный азот в аммонийную форму в ходе так называемой азотфиксации. Важнейшую роль среди азотфиксирующих организмов играют бактерии, живущие в клубеньках на корнях бобовых растений. По пищевым цепям органический азот передаётся от бобовых другим организмам экосистемы.

Когда в процессе клеточного дыхания белки и другие содержащие азот органические соединения расщепляются, азот выделяется в среду главным  образом в аммонийной форме. Некоторые  бактерии могут переводить ее в нитратную форму. Важно то, что обе эти формы могут усваиваться любыми растениями. В результате азот совершает круговорот как минеральный биоген. Однако такая минерализация обратима, поскольку другие почвенные бактерии постепенно превращают нитраты снова в газообразный азот. Правда, часть его окисляется в воздухе во время грозовых разрядов и поступает в почву с дождевой водой, но таким способом его фиксируется в 10 раз меньше, чем с помощью бактерий.

Таким образом, все естественные экосистемы зависят от азотфиксирующих организмов, поэтому крайне важна роль бактерий в клубеньках бобовых растений. Это семейство включает огромное число представителей – от клевера до тропических деревьев и пустынных кустарников. В каждой крупной наземной экосистеме -–от дождевых экваториальных лесов до тундры – есть характерные для неё виды бобовых. Интересно отметить, что бобовые обычно первыми заселяют гари – на них процесс реколонизации идёт значительно медленнее из-за недостатка в почве доступного азота. В водных экосистемах круговорот азота выглядит сходным образом, но здесь в роли основных азотфиксаторов выступают сине-зелёные водоросли.

Люди научились создавать  искусственные экосистемы, выращивая  урожаи кукурузы, пшеницы и других зерновых культур без участия  бобовых. При этом азот воздуха фиксируется на химических заводах. Искусственно полученные аммоний и нитрат представляют собой основные ингредиенты минеральных удобрений. Однако их высокая цена вынуждает специалистов реконструировать естественные условия, чередуя в севообороте бобовые и остальные культуры.

Фосфор. Этот элемент входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфат-иона (РО43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают фосфат-ион из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или её аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.

 У фосфора нет газовой  фазы и, следовательно, нет  «свободного возврата» в атмосферу.  Попадая в водоёмы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Следовательно, фосфат и другие минеральные биогены  почвы циркулируют в экосистеме лишь в том случае, если содержащие их отходы жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.

Сера.  Сера является важным составным элементом живого вещества. Большая часть её в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты.

Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.

В изверженных  породах сера находится преимущественно в виде сульфидных минералов: пирита FeS2 , пирронита Fe7S8, халькопирита FeCuS2, в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях – в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются её органические соединения.

Информация о работе Круговорот веществ в биосфере