Методы очистки, позволяющие из сточных вод получить воду питьевого качества

Автор работы: Пользователь скрыл имя, 10 Октября 2013 в 22:04, реферат

Описание работы

Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное количество воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.
Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

Содержание работы

Введение
1. Загрязнение водного бассейна
2. Мембранные методы очистки воды
2.1 Классификация мембран по размерам пор
2.2 Типы мембранных элементов
2.3 Основные закономерности процессов мембранного разделения
2.4 Представления о механизме разделения на мембранах
2.5 Загрязнение мембран и их промывка
2.6 Предварительная подготовка воды
3. Классификация мембранных методов
4. Практическое применение
4.1 Опреснение сточных вод методом обратного осмоса
4.2 Технологическая характеристика опреснения обратным осмосом
4.3 Выбор оборудования
4.4 Технологическая и экономическая оценка рассматриваемого оборудования
4.5 Промышленные системы водоподготовки
Обратный осмос для бытового использования (вместо заключения)
Список используемой литературы

Файлы: 1 файл

реферат доочистка.doc

— 4.32 Мб (Скачать файл)

Министерство образования и науки Российской Федерации

Федеральное агенство по образованию

Южно-Уральский государственный университет

Кафедра «Водоснабжение и водоотведение»

 

 

 

 

РЕФЕРАТ

 

       по дисциплине: «Доочистка сточных вод»

       на тему:      «Методы очистки, позволяющие из сточных вод получить воду питьевого качества»

 

 

 

 

                                                                              Выполнил:

                                                                      студентка гр.

                                                                              

                                                                                          «___»                 г.                                                                                         

 

                                                                             Проверил: 

                                                                              Сперанский В. С.

                                                                                          «___»                 г.                                                                                         

 

 

 

 

Челябинск

 

Содержание

 

Введение

1. Загрязнение водного бассейна

2. Мембранные методы очистки воды

2.1 Классификация мембран по размерам пор

2.2 Типы мембранных элементов

2.3 Основные закономерности процессов мембранного разделения

2.4 Представления о механизме разделения на мембранах

2.5 Загрязнение мембран и их промывка

2.6 Предварительная подготовка воды

3. Классификация мембранных методов

4. Практическое применение

4.1 Опреснение сточных вод методом обратного осмоса

4.2 Технологическая характеристика опреснения обратным осмосом

4.3 Выбор оборудования

4.4 Технологическая и экономическая оценка рассматриваемого оборудования

4.5 Промышленные системы водоподготовки

Обратный осмос для бытового использования (вместо заключения)

Список используемой литературы

 

Введение

 

Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км3.

Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное количество воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.

Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

 

1. Загрязнение водного бассейна

 

Загрязнение водного бассейна в городах следует рассматривать в двух аспектах - загрязнение воды в зоне водопотребления и загрязнение водного бассейна в черте города за счет его стоков. Проследим состав и объемы сточных вод на примере условного города-миллионера.

 

Таблица 1

Сточные воды (в тыс. т) города с населением 1 млн. человек

Показатель

Количество

Загрязненные сточные воды

350000,0

В том числе:

 

взвешенные вещества

36,0

фосфаты

24,0

азот

5.0

нефтепродукты

2,5

синтетические поверхностно-активные вещества

0,6


 

Загрязнение воды в зоне водопотребления является серьезным фактором, ухудшающим экологическое состояние городов. Оно производится как за счет сброса части неочищенных стоков городов и предприятий, расположенных выше зоны водозабора данного города и загрязнения воды речным транспортом, так и за счет попадания в водоемы части удобрений и ядохимикатов, вносимых на поля. Причем, если с первыми видами загрязнения можно путем строительства очистных сооружений бороться эффективно, то предотвратить загрязнение водного бассейна, производимое сельскохозяйственными мероприятиями, очень сложно. В зонах повышенного увлажнения около 20% удобрений и ядохимикатов, вносимых в почву, попадает в водотоки. Важно заметить, что водоочистные сооружения водопроводов не в состоянии очистить питьевую воду от растворов указанных веществ, поэтому питьевая вода может содержать их в себе в повышенных концентрациях и отрицательно повлиять на здоровье человека. Рост химизации сельского хозяйства неизбежно будет приводить к увеличению количества удобрений и ядохимикатов, вносимых в почву, и соответственно с этим их концентрация в воде будет увеличиваться.

Борьба с таким видом загрязнений требует использования удобрений и ядохимикатов в зонах водосбора исключительно в гранулированной форме, разработки и внедрения быстроразлагающихся ядохимикатов, а также биологических методов защиты растений.

Города также являются мощными источниками загрязнения водного бассейна. В крупных городах в расчете на одного жителя (с учетом загрязненных поверхностных стоков) ежесуточно сбрасывается в водоемы около 1 м3 загрязненных стоков. Поэтому города нуждаются в мощных очистных сооружениях.

 

2. Мембранные методы очистки воды

 

Мембранные системы водоподготовки, промышленное освоение которых началось примерно с 1985 года, в настоящее время применяются практически во всех отраслях, потребляющих очищенную воду.

 

Рис.1. Мембрана из ацетата целлюлозы (микроскопический снимок)

 

Первые искусственные мембраны были изготовлены в XIX веке из обработанной в азотной кислоте клетчатки (целлюлозы) - сырья, которое является ничем иным как оболочками растительных клеток, то есть природными мембранами. Из нитрата целлюлозы научились делать целлулоид, а позднее целлофан, но с обнаруженной у них микропористостью активно боролись, так как хотели получить в первую очередь защитные материалы, непроницаемые для воздуха и влаги. И только в 1960 году Лоэбом и Соурираджаном была изобретена мембрана из другого вида модифицированной целлюлозы - ацетата, которая была уже пригодна для практического применения (рис. 1).

Широкое внедрение мембранных процессов в практику стало возможно благодаря развитию науки о полимерах и использованию синтетических полимерных мембран.

Мембраны, как и другие фильтрующие материалы, можно рассматривать как полупроницаемые среды: они пропускают воду, но не пропускают, точнее, хуже пропускают некоторые примеси. Однако если обычное фильтрование применяют для удаления из воды относительно крупных образований - дисперсных и крупных коллоидных примесей, то мембранные технологии - для извлечения мелких коллоидных частиц, а также растворенных соединений. Для этого мембраны должны иметь поры очень малого размера.

Движущей силой, заставляющей жидкость проникать через препятствие в виде тонкой перегородки, может быть: а) приложенное давление; б) разница концентраций растворенных веществ; в) разница температур по обе стороны перегородки; г) электродвижущая сила. В этой части мы ограничимся рассмотрением баромембранных явлений - процессов разделения под действием давления.

Основное отличие мембран от обычных фильтрующих сред состоит в том, что они тонкие, и удаляемые примеси задерживаются не в объеме, а только на поверхности мембраны. Грязеемкость поверхности, очевидно, гораздо меньше, чем у объема. Казалось бы, мембрана должна из-за этого очень быстро засориться и перестать пропускать воду. Так бы оно и было, если бы в мембранном фильтре не происходило постоянного самоочищения мембраны. Для этого применяется так называемая «тангенциальная» схема движения воды в аппарате, при которой собирают воду с обеих сторон мембраны: одна часть потока проходит через мембрану и образует фильтрат (или пермеат), то есть очищенную воду, а другую направляют вдоль поверхности мембраны, чтобы смывать задержанные примеси и удалять их из зоны фильтрации. Эта часть потока называется концентратом или ретентатом, и обычно ее либо сбрасывают в дренаж, либо (например, при очистке гальванических стоков) отводят для дальнейшей обработки и выделения нужных компонентов. Таким образом, узел мембранной фильтрации имеет один вход и два выхода, и часть воды постоянно расходуется на очистку мембраны. (В двухступенчатых мембранных установках концентрат второй ступени может быть значительно чище, чем исходная вода, поэтому его можно использовать, подавая снова на вход установки. Таким способом добиваются снижения расхода воды.)

 

2.1 Классификация мембран по размерам пор

 

С точки зрения технологических возможностей различают мембраны для ультрафильтрации, нанофильтрации и обратного осмоса. В этом ряду размер пор уменьшается, а рабочее давление растет.

Ультрафильтрационные мембраны имеют наиболее крупные поры диаметром от 1 до 0,05 микрон (1 мкм=10-6 м) и работают обычно при давлениях 2-5 бар. Они применяются, например, для доочистки питьевой водопроводной воды от коллоидных и высокомолекулярных загрязнений, если не требуется корректировка ее солевого состава.

Нанофильтрационные элементы (поры 5-50 нм, или 0,05-0,005 мкм) используют для умягчения воды с повышенной жесткостью, для удаления ионов тяжелых металлов и хлороорганики. Одновалентные ионы, такие как Na, K, Cl, NO3 задерживаются слабо - в среднем не более 10-30%. Рабочее давление нанофильтрации обычно не превышает 5-7 бар.

Обратноосмотические мембраны имеют поры диаметром менее 10 нанометров (менее 0,01 мкм), работают при давлениях до 100 бар и позволяют осуществлять глубокое обессоливание, или деминерализацию. Обратный осмос применяют для получения сверхчистой воды для производственных нужд, а также для опреснения морской и солоноватых подземных вод, причем степень обессоливания (селективность) составляет обычно не менее 92-97%.

 

2.2 Типы мембранных элементов

 

Мембраны могут иметь различную геометрическую форму: трубчатые, половолоконные и плоские.

Трубчатые мембраны представляют собой трубки диаметром от нескольких миллиметров до 1-2 см, изготовленные из пористого материала, например керамики. При этом они могут быть симметричными или асимметричными. Симметричная мембрана имеет одинаковую пористость по всему объему материала. У асимметричной же трубки на одной из поверхностей - наружной или внутренней - при изготовлении формируют тонкий слой такого же или другого материала с гораздо большей плотностью. Этот слой и является работающим, так как именно он определяет задерживающую способность мембраны. Более крупнопористый материал играет роль подложки-носителя с дренажными свойствами. Подача очищаемой воды осуществляется со стороны рабочей поверхности.

Мембраны в виде полых волокон (Hollow Fibre) тоже имеют трубчатую форму, но их диаметр составляет обычно от 0,1 до 0,5 мм. Из-за такого малого размера в единицу объема фильтровального аппарата можно поместить огромное количество волокон, и их суммарная рабочая поверхность будет в десятки и даже сотни раз выше, чем у трубчатых мембран большого диаметра (см. табл.). Имея развитую рабочую поверхность, половолоконные фильтры обладают и гораздо большей, по сравнению с трубчатыми, производительностью при прочих равных условиях - давлении, размере пор и т. д. Однако это преимущество имеет и оборотную сторону: из-за того, что движение очищаемой жидкости вдоль рабочей поверхности каждого волокна трудно контролировать и регулировать, волоконная мембрана имеет склонность к загрязнению, а очистка ее поверхности крайне затруднена. Поэтому половолоконные фильтры создают больше проблем при эксплуатации, требуют тщательной предварительной очистки подаваемой на обработку воды. Кроме того, обладая самой высокой плотностью упаковки, волокна имеют и самый толстый рабочий слой мембраны (относительно всей толщины стенки), поэтому их пропускная способность в пересчете на единицу рабочей поверхности может уступать другим мембранам.

 

Рис.2. Композитная РА-мембрана: 1 - мембрана; 2 - клей; 3 - дренажная прокладка 4 - трубка для пермеата 5 - отверстия

 

Рис.3. Рулонный элемент, перед сборкой

 

Плоские мембраны производят в виде пленок (thin film), которые могут быть бесподложечными (однородное вещество), армированными (с тканевой основой и нанесенным пористым материалом) и подложечными (с подложкой из крупнопористого материала и нанесенным рабочим слоем). Современные обратноосмотические мембраны, как правило, тонкопленочные композитные, то есть многослойные, причем каждый слой изготавливается из разных химических соединений. На рис. 2 такая мембрана показана в разрезе. В качестве основы (1) используется нетканое полотно из полистирола. Сверху наносится достаточно толстый слой микропористого полисульфона (2), назначение которого в том, что он должен иметь хорошую проницаемость, но при этом сопротивляться деформации (сжатию) под действием давления. Верхний слой (3) - барьерный - изготавливают из ароматического полиамида (РА, Nylon).

 

Таблица 2


По способу упаковки плоских мембран различают плоскорамные, диско-модульные и рулонные (Spiral Wound) аппараты. Наиболее распространены рулонные фильтроэлементы, в которых, как следует из их названия, мембраны вместе с дренажными прокладками накручивают на дренажную трубку в виде рулона (см. рис. 3,4). При подаче исходной воды с торца фильтрат движется по спирали и собирается в дренажной трубке, а концентрат выходит с противоположного торца. По плотности упаковки рулонные элементы занимают промежуточное положение между трубчатыми и половолоконными мембранами (см. табл.), обладают удобной геометрией и характеризуются крайне малой толщиной рабочего слоя, что в совокупности обеспечивает им наилучшее сочетание высокой удельной производительности и относительно низкой склонности к загрязнению.

Мировыми лидерами по производству мембран и мембранных элементов являются фирмы Dow Chemical, Filmtec, Hydranautics, Osmonics (США).

 

2.3 Основные закономерности процессов мембранного разделения

 

1. Поток очищенной воды прямо пропорционален площади мембраны.

2. Поток воды через мембрану тем больше, чем выше приложенное давление.

3. Производительность мембраны тем выше (при прочих равных условиях), чем тоньше мембрана. Для многослойных мембран учитывают толщину самого плотного рабочего слоя.

4. Повышение температуры воды уменьшает ее вязкость и вследствие этого повышает пропускную способность мембраны. Увеличение потока составляет примерно 3% на каждый градус Цельсия.

Информация о работе Методы очистки, позволяющие из сточных вод получить воду питьевого качества