Автор работы: Пользователь скрыл имя, 24 Сентября 2014 в 21:23, реферат
Жизнь на планете развивается в условиях практически постоянного количества вещества. Любой организм как открытая система существует в потоке вещества. Например, организм человека обновляет практически все вещество в среднем за семь лет. Это происходит благодаря гармонично сочетающимся процессам созидания и разрушения более элементарных форм жизни, образующих его. Сырье для внутреннего созидания мы получаем в основном с пищей. Отработанное вещество удаляется из организма в окружающую среду.
Особенность биосферы как организма, в том, что не существует сколько-нибудь существенного потока вещества из космоса или из недр Земли в биосферу и наоборот.
Введение
1 Нарушение круговорота веществ
1.1 Круговорот веществ в биосфере и экосистемах
1.2 Круговорот углерода
1.3 Круговорот азота
1.4 Круговорот серы
1.5 Круговорот фосфора
1.6 Круговорот воды
2 Эвтрофикация
2.1 Эвтрофикация воды в реках и озерах
Заключение
Список использованных источников
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ ГОРНОГО ДЕЛА И ИНЖЕНЕРНОЙ ЭКОЛОГИИ
Выполнила: студентка 3 курса
Проверила:
Минск 2014
1.2 Круговорот углерода
1.3 Круговорот азота
1.4 Круговорот серы
1.5 Круговорот фосфора
1.6 Круговорот воды
Жизнь на планете развивается в условиях практически постоянного количества вещества. Любой организм как открытая система существует в потоке вещества. Например, организм человека обновляет практически все вещество в среднем за семь лет. Это происходит благодаря гармонично сочетающимся процессам созидания и разрушения более элементарных форм жизни, образующих его. Сырье для внутреннего созидания мы получаем в основном с пищей. Отработанное вещество удаляется из организма в окружающую среду.
Особенность биосферы как организма, в том, что не существует сколько-нибудь существенного потока вещества из космоса или из недр Земли в биосферу и наоборот. Поэтому основные потоки вещества в биосфере организуются посредством круговоротов веществ.
Различают два основных круговорота: большой (геологический) и малый (биотический).
Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
На рисунке 1.1 представлен большой круговорот веществ.
Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило, животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.
На рисунке 1.2 представлен малый круговорот веществ.
Рис.1.2 – Малый круговорот веществ.
Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.
Рассмотрим круговороты веществ в отдельности.
1.2 Круговорот углерода
Углерод является одним из самых необходимых для жизни компонентов. В состав органического вещества он включается в процессе фотосинтеза. Затем основная его масса поступает в пищевые цепи животных и накапливается в их телах в виде различного рода углеводов.
Главную роль в круговороте углерода играет атмосферный и гидросферный фонды углекислого газа СО2. Этот фонд пополняется при дыхании растений и животных, а также при разложении мертвой органики. Некоторая часть углерода ускользает из круговорота в захоронения. Однако человек в последнее время достаточно успешно разрабатывает эти захоронения, возвращая в круговорот жизни углерод и другие важные для жизни элементы, накопленные за миллионы лет. Хотя это приводит к ряду отрицательных для нас последствий, но как знать, может быть, именно эту миссию мы должны были выполнить для биосферы.
Например, известно, что увеличение содержания СО2 и понижение содержания О2 в атмосфере приводит к усилению фотосинтеза. Может быть, после того, как мы очистим планету от современных форм жизни (в том числе и от своего присутствия на ней), начнется бурный этап развития новых более совершенных форм, которые сейчас не могут выдержать конкуренции. Ведь была же когда-то эпоха анаэробной жизни на земле. «Неприятным» продуктом их жизнедеятельности был кислород, накопление которого практически погубило эту форму жизни. Теперь ее следы можно обнаружить лишь в недрах болот, да в глубоководных впадинах. Но зато было дано начало новым более совершенным аэробным организмам, которые научились «нейтрализовывать» кислород и даже использовать его химическую активность для получения свободной энергии.
На рисунке 1.2 представлен круговорот углерода.
Рис.1.2 - Круговорот углерода
Содержащийся в атмосфере углерод в процессе фотосинтеза вводится в органическое вещество растений, а далее — в цепи питания. Высвобождение углерода из органического вещества совершается в процессе дыхания организмов. Большая масса углерода высвобождается из мертвого органического вещества организма-миредуцентами. Нарушение циклов углерода связано с высвобождением его из геологических структур и в результате изменения площадей и производительности растительных сообществ . Часть углерода накапливается в атмосфере в форме углекислого газа и метана, создавая парниковый эффект.
На рисунке 1.3 представлена схема парникового эффекта.
Рис.1.3 - Схема парникового эффекта
1.3 Круговорот азота
Азот входит в состав аминокислот, являющихся основным строительным материалом для белков. Хотя азот требуется в меньших количествах, чем, например, углерод, тем не менее, дефицит азота отрицательно сказывается на продуктивности живых организмов.
Основным источником азота является атмосфера, откуда в почву, а затем в растения азот попадает, только в форме нитратов, которые являются результатом деятельности организмов-азотофиксаторов (отдельные виды бактерий, сине-зеленых водорослей и грибов), а также электрических разрядов (молний) и других физических процессов. Остальные соединения азота не усваиваются растениями.
Второй источник азота для растений – результат разложения органики, в частности белков. При этом, в начале образуется аммиак, который преобразуется бактериями-нитрификаторами в нитраты и нитриты.
Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрификаторов, разлагающих нитраты до свободного азота и кислорода.
Значительная часть азота, попадая в океан (в основном со сточными континентальными водами), частично используется водной растительностью, а затем по пищевым цепям через животных возвращается на сушу. Небольшая часть азота выпадает из круговорота, уходя в осадочные соединения. Однако эта потеря компенсируется поступлением азота в воздух с вулканическими газами, а также с индустриальными выбросами. Если бы наша цивилизация достигла такой технической мощи, что смогла бы блокировать все вулканы на Земле (я не сомневаюсь, что подобные проекты обязательно возникли бы), то при этом из-за прекращения поступлений углерода, азота и других веществ, от голода могло бы погибнуть больше людей, чем страдает сейчас от извержений вулканов.
Антропогенный азот поступает в природу в основном в форме азотных удобрений. Их количество примерно равно природной фиксации азота в атмосфере, но ниже биологической фиксации.
В природных экосистемах порядка 20 % азота — это новый азот, полученный из атмосферы путем азотофиксации. Остальные 80 % возвращаются в круговорот вследствие разложения органики. В агросистемах из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно, большая же часть теряется с собираемым урожаем, а также в результате выщелачивания (выноса водой) и денитрификации.
Лишь прокариоты, безъядерные, самые примитивные микроорганизмы могут превращать биологически бесполезный газообразный азот в формы, необходимые для построения и поддержания живой протоплазмы. Когда эти микроорганизмы образуют взаимовыгодные ассоциации с высшими растениями, фиксация азота значительно усиливается. Растения представляют бактериям подходящее местообитание (корневые клубеньки), защищают микробы от излишков кислорода и поставляют им необходимую высококачественную энергию. За это растение получает легкоусвояемый фиксированный азот. Мечта современных специалистов по генной инженерии — создать самоудобряющиеся сорта зерновых культур, которые имели бы на корнях клубеньки с азотофиксирующими бактериями, аналогичные клубенькам на корнях бобовых растений. Полагают, что это позволило бы совершить существенный прорыв в сельском хозяйстве. Однако как знать, не нарушит ли подобное увеличение природной фиксации свободного азота того хрупкого баланса притока и оттока азота в атмосфере, который обеспечивает стабильность концентрации азота в воздухе, которым мы дышим.
На рисунке 1.3 представлен круговорот азота.
Рис.1.3- Круговорот азота
1.4 Круговорот серы
Сера является элементом, необходимым для синтеза многих белков. Для биосистем требуется очень мало серы.
Круговорот серы осуществляется через воздух, воду и почву. Сульфат SO4 аналогично нитрату и фосфату — основная доступная форма серы, которая восстанавливается растениями и включается в белки. Затем она проходит по пищевым цепям экосистем и возвращается в круговорот с экскрементами животных.
Основными источниками поступления соединений серы в биосферу являются производственная деятельность человека (сжигание угля и серосодержащих углеводородов), вулканы, разложение органики и распад серосодержащих руд и минералов.
На рисунке 1.4 представлен круговорот серы.
Рис.1.4 – Круговорот серы
1.5 Круговорот фосфора
Фосфор является необходимым компонентом нуклеиновых кислот (РНК и ДНК), выполняющих в биосистемах функции, связанные с записью, хранением и чтением информации о строении организма. Фосфор — достаточно редкий элемент. Относительное количество фосфора, требуемое живым организмам, гораздо выше, чем относительное содержание его в тех источниках, откуда организмы черпают необходимые им элементы. То есть дефицит фосфора в большей степени ограничивает продуктивность в том или ином районе, чем дефицит любого другого вещества, за исключением воды.
Фосфор встречается лишь в немногих химических соединениях. Он циркулирует, переходя из органики в фосфаты, которые могут затем использоваться растениями. Особенность круговорота фосфора в том, что в нем отсутствует газообразная фаза. То есть основным резервуаром фосфора является не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые эпохи. Породы эти подвергаются эрозии, высвобождая фосфаты в экосистемы. После неоднократного потребления его организмами суши и моря фосфор в конечном итоге выводится в донные осадки. Это грозит дефицитом фосфора. В прошлом морские птицы, по-видимому, возвращали фосфор в круговорот. Сейчас основным поставщиком фосфора является человек, вылавливая большое количество морской рыбы, а также перерабатывающий донные отложения в фосфаты. Однако добыча и переработка фосфатов создает серьезные проблемы с загрязнением окружающей среды.
На рисунке 1.5 представлен круговорот фосфора.
Информация о работе Нарушение круговорота веществ. Эвтрофикация