Охрана водных экосистем

Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 18:33, реферат

Описание работы

Проблемы чистой воды и охраны водных экосистем становятся все более острыми по мере исторического развития общества, стремительно увеличивается влияние на природу, вызываемого научно- техническим прогрессом.
Уже сейчас во многих районах земного шара наблюдаются большие трудности в обеспечении водоснабжения и водопользования в следствие качественного и количественного истощения водных ресурсов, что связано с загрязнением и нерациональным использованием воды.
Загрязнение воды преимущественно происходит вследствие сброса в нее промышленных, бытовых и сельскохозяйственных отходов. В некоторых водоемах загрязнение настолько велико, что произошла их полная деградация как источников водоснабжения.
Небольшое количество загрязнений не может вызвать значительное ухудшение состояния водоема, так как он имеет способность биологического очищения, но проблема состоит в том, что как правило количество загрязняющих веществ, сбрасываемых в воду, очень велико и водоем не может справиться с их обезвреживанием.

Содержание работы

Введение.
I. Гидросфера как среда жизнедеятельности.
II. Население.
Физико-химические свойства воды.
Экологические основы жизнедеятельности.
Водные биоресурсы и их рациональное использование.
Загрязнение водоемов.
Вывод.
Список литературы:

Файлы: 1 файл

ohr.doc

— 47.00 Кб (Скачать файл)

Ионы минеральных солей играют в жизни гидробиоитов самую различную роль: одни из них используются растениями для построения тела и получившие название биогенов. На других они оказывают физиологическое влияние, вызывая резкие сдвиги в процессах обмена веществ. Виды, выносящие большие колебания солености, называются эвриолинными, в отличие от стенолинных, не выдерживающих такие перепады. Большое экологическое значение для гидробиологов имеет не только суммарное количество ионов, но также и их состав, соотношение. Существенное значение имеет тот факт, что с увеличением солености понижается точка замерзания воды.

Взвешенные в воде вещества с известной степенью условности могут быть подразделены на возмущенный грунт , содержащий небольшее количество органического вещества, и детрит, в котором его сравнительно много. Присутствие в воде большого количества взвешенных частиц оказывает на водное население самое разнообразное влияние. Снижение прозрачности воды в результате возмущения грунта с одной стороны уменьшает освещение донных растений, а с другой -сопровождается увеличением концентрации биогенов. Неблагоприятное воздействие оказывает минеральная взвесь на животных, отфильтровывающих свой корм в толще воды, и засыпая организмы, обитающие на грунте.

Температура, свет, звук и другие колебания воздействуют на водное население или непосредственно или играют роль условных сигналов. К первому случаю относится, например, влияние температуры на протекание многих биологических процессов, значение света для фотосинтеза и т.п.

Термический режим отдельных водоемов определяется их географическим положением, глубиной, особенностью циркулирования водных масс и многими другими факторами. Поступление тепла в водоем зависит главным образом от проникновения солнечной радиацией и и контакта с менее нагретой атмосферой. Известную роль играет тепло выпадающих осадков. В последние годы тепловой режим многих водоемов претерпевает существенные изменения под влиянием поступления в них подогретых вод из охлаждающих контуров тепловых и атомных станций. Температурный водный баланс безусловно зависит от времени года.

У многих гидробиоитов, периодически подвергающихся действию отрицательных температур вырабатываются адаптации, предупреждающие замерзание соков тела. В основном они сводятся к снижению точки замерзания соков и повышению их способности к переохлаждению. Благодаря этим адаптациям некоторые организмы переносят понижение температуры до -10'С, например, мидии. Чем чаще и сильнее периодические изменения температуры в естественных местах обитания гидробиоитов, тем выше их устойчивость к холодовым и тепловым повреждениям.

Большое экологическое значение температура имеет как фактор влияющий на скорость протекания процессов, в частности дыхания, роста и развития. Повышение температуры обычно сопровождается ускорением всех процессов.

Во всех случаях оптимальные для роста амплитуды и скорости изменения температуры оказались сходными с теми перепадами, какие рыбы испытывают в природных местах обитания. По-видимому, для организмов неблагоприятно стационарное состояние фактора, если в естественных условиях оно динамично. Организмы, исторически адаптированные к экологическому разнообразию, не только ризестентны к нему, но и нуждаются в нем; экологическое однообразие в своем предельном выражении, создаваемом в искусственных условиях, не соответствует физическим потребностям организмов, уменьшает их жизнедеятельность.

Особенно большое экологическое значение свет имеет для фотосинтезирующих растений. Из-за его недостатка они отсутствуют на многокилометровой глубине океанических вод. Реже растения страдают от избытка света и отсутствуют в поверхностном слое воды, если его освещенность становится черезмерной.

Большинству животных свет нужен для распознания среды и ориентации движений. Под контролем светового фактора происходят грандиозные миграции, когда каждые сутки миллиарды тонн живых организмов перемещаются на сотни метров с поверхности в глубину и обратно. В очень большой степени от света зависит окраска гидробиоитов, которая у ряда животных может даже меняться, обеспечивая маскировку.

Ориентируясь на свет, гидробиоиты находят для себя наиболее выгодное положение в пространстве. Особенно большое значение свет имеет для организмов, совершающих суточные миграции. В большинстве случаев начало подъема и спуска определяется временем наступления той или иной освещенности.

Восприятие звука у водных животных развито относительно лучше, чем у наземных. Звук быстрее и дольше распространяется в воде, чем на суше. Известное значение в жизни гидробиоита имеют шумовые нагрузки, связанные с деятельностью человека -работой лодочных и корабельных моторов, турбин, подводным бурением и т.д. У гидробиоитов одновременно снижается скорость дыхания, темп роста и доля яйценосных самок; привыкание к шуму не наблюдается даже после месячного содержания рыб в таких условиях.

Очевидно,весьма значительную, но еще малоизученную роль играют в жизни гидробиоитов электрические и магнитные поля. Благодаря высокой чувствительности электрорецепторов, многие гидробиоиты способны воспринимать богатейшую информацию, в частности различают особей своего вида и врагов, скорость и направление течений, температуру, солевые и газовые ингредиенты, а также устанавливают симптомы, предшествующие аномальным природным явлениям.

 

Экологические основы жизнедеятельности.

 

В биосферном аспекте питание -один из основных процессов, благодаря которому осуществляется круговорот веществ в природе. В более узком плане питание выступает как процесс включения того или иного органического вещества вкакие-либо конкретные организмы, желательные или нежелательные для человека. Управление этим процессом в целях усиления воспроизводства нужного биологического сырья, формирования высокого качества воды и охраны чистоты водоемов в условиях их комплексного использования -одна из актуальнейших проблем.

Пищевые адаптации водных организмов с одной стороны направлены на добывание корма нужного количества, т.е. обуславливают выборность или элективность питания; а с другой стороны обеспечивают определенный уровень интенсивности питания, т.е. добывание корма в нужных количествах и достаточно высокую степень его переваривания.

Покровы гидробиоитов полупроницаемы. Находясь в воде они должны противостоять физико-химическим силам выравнивания осмотических и солевых градиентов, а временно оказываясь в воздушной среде избежать потери влаги. Для противостояния силам выравнивания водные организмы вырабатывают ряд адаптаций, Направленных, с одной стороны, на активное поддержание нужных градиентов, а с другой- уменьшение до минимума физико-химических эффектов, в частности за счет снижения проницаемости покровов. Последний путь, энергетически более экономный, используется в ограниченных пределах, поскольку растущая изоляция от среды осложняет процессы обмена веществ с нею.

Процессы регуляции водно-солевого обмена обеспечиваются работой выделительной системы, рядом морфологических и поведенческих адаптаций. Приспособление к снижению влагоотдачи и некоторые другие предохраняют гидробиоитов от гибели вне воды, например в приливно-отливной зоне, в пересыхающих водоемах, при периодических выходах на сушу. Ряд адаптаций обеспечивает защиту водных организмов от осмотического обезвоживания и обводнения, создающих угрозу механического повреждения клеток. В соответствии с этим решается задача регулирования и концентрации соотношения отдельных ионов в клетках тела. Совершенством адаптаций, обеспечивающих стабилизацию водного и солевого обмена, определяется их способность существовать в водах различной солености и выживать в осматически неустойчивой среде.

Помимо расширительного понимания дыхания как всякого высвобождающего энергию биологического окисления, есть и более узкое, распространяющееся только на процессы, связанные с поглощением кислорода. Аэробное дыхание в воде сложнее, чем на суше. У наземных животных влага на дыхательных поверхностях нормальное и несколько меньшее количество растворееного кислорода. Если вода, омывающая дыхательные структуры гидробиоитов, насыщена кислородом, то условия их дыхания не хуже, а даже лучше, чем у наземных форм. Однако, гораздо чаще содержание кислорода в воде немного ниже нормального и в таких случаях распираторная обстановка для гидробиоитов крайне неблагоприятна. При этом следует учесть, что концентрация кислорода снижается в результате жизнедеятельности самих гидробиоитов, и не всегда достаточно быстро восстанавливается за счет тех или иных внутриводоемных процессов. Сложность распираторных условий в воде обусловила выработку у гидробиоитов ряда морфологических, физиологических и биохимических реакций организма, обеспечивающих нужный уровень интенсивности дыхания в более или менее широком интервале концентраций растворенного кислорода. Регулируя интенсивность газообмена, гидробиоиты маневренно оптимизируют свою энергетику, экономичность процессов реализации программы роста и развития. В условиях крайнего дефицита кислорода гидробиоиты предельно снижают свою активность и некоторое время выживают благодаря использования минимума энергии. Небольшое число гидробиоитов постоянно существуют в отсутствие растворенного кислорода, извлекая его из химических соединений и добывая энергию другими способами.

Росту организмов сопутствует их развитие -поступательное изменение всей организации тела, направленное на достижение оптимального репродуктивного состояния, обеспечение необходимой эффективности размножения. В ходе онтогенеза, перестраиваясь структурно и функционально, организмы достигают репродуктивной зрелости. Чем больше образуется потомков и выше их выживаемость, тем успешнее реализуется жизненная стратегия вида -максимизация в биосфере, свойственной ему формы трансформации веществ и энергии, универсализация своего образа жизни, предельное усиление своей биогеохимической функции на Земле. Поскольку такая тенденция свойственна всем видам, это усиливает их конкуренцию на материальные и энергетические ресурсы биосферы, расширяет ресурсную базу жизни, интенсифицирует в эволюционном аспекте биологический круговорот веществ и поток энергии в биосфере.

 

Водные биоресурсы и их рациональное использование.

 

В результате роста и размножения гидробиоитов в водемах происходит непрерывное образование биомассы. Это экосистемное явление называют биологической продуктивностью, сам процесс образования биомассы -биологическим продуцированием, а новообразованную биомассу -биологической продукцией. Биологическая продукция -только часть биоорганической продукции -всего органического вещества, содаваемого организмами в процессе своей жизнедеятельности. Биопродуктивность экосистем реализуется в форме образования организмов, полезных, безразличных или вредных для человека. В связи с этим исходя из текущих запросов практики можно говорить о биохозяйственной продукции -биомассе организмов, имеющих в настоящее время промысловое значение. Вне зависимости от интересов практики различают продукцию первичную и вторичную. Первая представляет собой результат биосинтеза органического вещества из неорганического в процессе жизнедеятельности гидробиантов-автотрофов. Вторичная продукция образуется в процессе трансформации уже имеющегося органического вещества организмами-гетеротрофами.

Биопродуктивность гидросистем можно рассматривать в двух планах: природном (биосферном) и социально экономическом. В первом случае результаты продуцирования безотносительно к интересам человека, как одну из особенностей круговорота веществ в экосистеме, как одну из функций экосистем -блоков биосферы. С социально-экономической точки зрения биопродуктивность характеризуется величиной вылова гидробиантов, используемых человеком. В этом случае продуктивность определяется как свойствами самих эксплуатируемых экосистем, так и формой их хозяйственного освоения.

Организмы, используемые в качестве объектов промысла, образуют биологические ресурсы водоемов. В историческом процессе становления природы для человека все большее число гидробиантов вовлекается в сферу общественного производства и становится биоресурсами людей. Гидробианты в воспроизводство которых вкладывается труд -это уже не биоресурсы, а возделываемое сырье.

Из огромного числа гидробиоитов только очень немногие представители флоры и фауны используются человеком в качестве биологического сырья. Этим в значительной мере объясняется тот факт, что водные растения и животные составляют 3% в пище людей, хотя первичная продукция гидросферы только в 3 раза меньше первичной продукции суши. Поэтому перспективная оценка биологических ресурсов гидросферы должна исходить нетолько из учета возможного вылова объектов, добываемых в настоящее время.

В отличие от полезных ископаемых биологические ресурсы относятся к самовоспроизводящимся. Следовательно, их величина в гидросфере определяется не количеством имеющихся промысловых организмов, а их приростом, т.е. продукцией. Мерой реализации этой продукции служит промысел.

Объем устойчивого промысла водных организмов определяется величиной их естественного воспроизводства. Поэтому промысел не должен превысить естественных природных популяций и учитывать особенности их воспроизводства (сроки, места, орудия лова и т.д.). Охрана и повышение эффективности естественного воспроизводства представляют собой важную меру укрепления сырьевой базы промысла, равно как и обогащение водоемов новыми промысловыми объектами за счет акклиматизации.

Промысел водных организмов не всегда легко отличить от "урожая" при искусственном разведении, т.к. существует множество переходных форм между этими двумя видами биосырья.

В настоящее время мировой промысел гидробиоитов составляет около 20% животных белков, потребляемых человеком. До начала 70-х годов он быстро возрастал, затем стабилизировался. Среди рыб значительную долю в промысле составляют сельдевые, тресковые, скумбриевые и ставридовые. В меньшем количестве добываются тунцовые, мерлузовые и комбаловые, еще меньше отлавливаются лососевые.

Среди нерыбных объектов, добываемых в водоемах в настоящее время, первое место по массе занимают моллюски. Из них в наибольшем количестве добываются двустворчатые моллюски, в значительном количестве -головоногие моллюски (больше половины из них -кальмары). Из ракообразных наибольшую роль в промысле играют крабы и креветки.

Мировой промысел гидрофитов основан преимущественно на добыче красных и бурых водорослей. В гораздо меньшем количестве добывают зеленые. Значительная часть водорослей используется для йода и других технических и медицинских продуктов.

В настоящее время уровень использования гидробиоитов в отношении большинства традиционных объектов промысла достиг величин, близких к предельным. Во многих случаях наблюдается перелов гидробиоитов; что означает, что воспроизводительная способность их популяций уже не может компенсировать убыль в результате промысла. В 1770г. был убит последний экземпляр замечательного растительноядного млекопитающего -стеллеровой (морской) коровы. Почти исчез в наше время гренландский кит, взятый под охрану слишком поздно, под угрозой исчезновения находится синий кит. Среди рыб наблюдается перелов многих легко поддающихся добыче камбал, сельдей. В ряде районов в чрезвычайно напряженном состоянии находятся запасы крабов. Поэтому с необычайной остротой встает вопрос об охране и повышении естественного воспроизводства биоресурсов.

Информация о работе Охрана водных экосистем