Автор работы: Пользователь скрыл имя, 16 Мая 2013 в 12:55, реферат
Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики.
Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.
Введение……………………………………………………………………………...3
1 Радиоактивность. Виды радиоактивного излучения…………………………….4
2. Методы регистрации радиоактивного излучения……………………………….
3. Закон радиоактивного распада. Период полураспада…………………………
4. Виды радиоактивного распада ядер…………………………………………….
5. Заключение……………………………………………………………………….
6. Список использованной литературы……………………………………..
dN=-λNdt.
Здесь λ — характерная для радиоактивного вещества константа, называемая постоянной распада. Знак минус взят для того, чтобы dN можно было рассматривать как приращение числа нераспавшихся ядер N.
Интегрирование этого выражения приводит к соотношению:
N=N0e-λt
где Nо—количество ядер в начальный момент, N—количество нераспавшихся атомов в момент времени t. Эта формула выражает закон радиоактивного превращения. Этот закон весьма прост: число нераспавшихся ядер убывает со временем по экспоненте.
Количество ядер, распавшихся за время t, определяется выражением
No-N=No(1-e-λt).
Время, за которое распадается половина первоначального количества ядер,
называется периодом полураспада Т. Это время определяется условием
Откуда,
Период полураспада для известных в настоящее время радиоактивных ядер находится в пределах от 3*10-7 с до 5*1015 лет.
Найдем среднее время жизни радиоактивного ядра. Количество ядер dN(t), испытывающих превращение за промежуток времени от t до t + dt, определяется модулем выражения: dN(t) = λN(t)dt. Время жизни каждого из
этих ядер равно t. Следовательно, сумма времен жизни всех No имевшихся первоначально ядер получается путем интегрирования выражения tdN(t). Разделив эту сумму на число ядер No, получим среднее время жизни τ радиоактивного ядра
Таким образом, среднее время жизни есть величина, обратная постоянной распада λ:
Сравнение с показывает, что период полураспада Т отличается от τ числовым множителем, равным In 2.
4. Виды радиоактивного распада ядер
АЛЬФА-РАСПАД — испускание а-частиц атомными ядрами в процессе самопроизвольного радиоактивного распада. В результате А.-р. «материнское» ядро с зарядом Z и массовым числом А превращается в новое «дочернее» ядро с зарядом Z-2 и массовым числом А-4.
Известно около 160 а-активных ядер. Подавляющая часть их распадается в конце периодической системы и обладает Z>82. Несколько а-активных ядер (например, 14662Sm) имеется в области редких земель. а-активные ядра в области Z<82 наблюдаются почти исключительно среди нейтронодефицитных ядер (ядер с непропорционально малым числом нейтронов), сильно неустойчивых по отношению к К-захвату и испусканию позитронов.
Времена жизни а-активных ядер колеблются в очень широких пределах: от 3•10-7 с для 212Ро до 5-1015 лет для 142Се. Энергии А.-р. всех тяжелых ядер заключены в пределах 4— 9 МэВ; энергии А.-р. ядер в области редких земель составляют 2—4,5 МэВ.
В процессе А.-р. различают две стадии: образование а-частицы из нуклонов ядра и испускание а-частицы ядром. О первой стадии в настоящее время почти ничего не известно. Ясно, однако, что образование а-частиц происходит с заметной вероятностью и поэтому мало сказывается на времени жизни а-активных ядер, которые определяются второй, существенно более медленной стадией процесса.
БЕТА-РАСПАД — радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода: либо нейтрона (п) в протон (р), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е) и происходит так называемый β-распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением еще одной частицы нейтрино (ν) в случае β-распада или антинейтрино (Z) в случае β-распада. При β-распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу. Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядро-продукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β-распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:
где X-символ ядра, состоящего из Z-протонов,Az—нейтронов.
Простейшим примером р~-распада является превращение свободного
нейтрона в протон с
испусканием электрона и
Б.-р. наблюдается как у
естественно-радиоактивных, так и
у искусственно-радиоактивных
Eβ-=(Mz-Mz+1)C2,
где М — масса нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, и энергия Б.-р. равна
Eβ=(Mz-Mz-1-2me)C2,
где me — масса электрона.
Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из легких частиц может уносить практически любую энергию от 0 до Еβ, т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.
Итак, при β-распаде масса исходного атома превышает массу конечного атома, а при β+распаде это превращение составляет не менее двух электронных масс.
Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению. С тем количеством, которое отвечает максимальной устойчивости. Таким образом, тенденция к β-распаду или К-захвату характерна для нейтронодефицитных, а тенденция к β-распаду — для нейтроноизбыточных изотопов.
ЭЛЕКТРОННЫЙ ЗАХВАТ — вид радиоактивного превращения, при котором ядро атома захватывает электрон из своей электронной оболочки, в результате чего один из протонов ядра превращается в нейтрон с выделением нейтрона. Заряд ядра атома после Э. з. уменьшается на единицу, а массовое число не меняется. Э. з. обусловлен избытком протонов в соответствующем радионуклиде (см. Изотопы). При Э. з. наиболее вероятен захват электрона с ближайшего к ядру атома (см.) энергетического уровня (так называемый К-захват); захват электрона со следующего (L) уровня примерно в 100 раз менее вероятен, чем К-захват. После поглощения электрона при Э. з. освободившееся место занимает электрон с более высокого энергетического уровня. При этом атом испускает характеристическое рентгеновское излучение (см.), по которому можно установить наличие Э. з. и определить количество радиоактивного вещества.
ЗАКЛЮЧЕНИЕ
Делая этот реферат, я открыла для себя много нового. Я выбирала нужную информацию из многих источников. В ходе отбора информации я находила много интересного. Эта работа объединяет в себе труды многих людей. В ней коротко изложен почти весь материал о главных аспектах радиоактивности.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Энциклопедия по физике “Радиоктивные излучения”
Информация о работе Радиоактивность. Виды радиоактивного излучения