Шпаргалка по "Экология"

Автор работы: Пользователь скрыл имя, 22 Мая 2015 в 23:42, шпаргалка

Описание работы

Екология как наука, связь с другими науками.
В начале XX в. сформировалась новая биологическая наука —экология. В переводе с греческого — это «наука о местообитании». Экология — это наука о взаимоотношениях организмов, сообществ между собой и с окружающей средой. Представления о наличии взаимосвязи живых существ между собой и со средой их обитания существовали в биологии уже давно. В зоологических и ботанических работах издавна помимо описания строения животных и растений рассказывалось об условиях их существования. Сам термин «экология» был введен в науку в 1866 г. видным немецким биологом Э. Геккелем.

Файлы: 1 файл

Опрос по экологии.docx

— 100.61 Кб (Скачать файл)

При характеристике экологической ниши дается полное экологическое описание вида (что? где? когда?).

По выражению Одума, экологическая ниша – это «профессия» вида, т.е. та роль, которую играет организм в экосистеме. Выделяют потенциальную экологическую нишу и реализованную.

Потенциальная экологическая ниша – та совокупность условий, где может существовать вид при отсутствии других видов и давлении со стороны. Она определяется устойчивостью организма к ведущим параметрам абиотической среды.

Реализованная экологическая ниша – та ниша, которую вид занимает реально. Когда вид попадает в сообщество, ниша сужается.

Существует 4 типа взаимодействия ниш:

1) ниши не соприкасаются –  два вида не связаны напрямую;

2) когда виды немного схожи, число  соприкосновений невелико;

3) почти полное перекрывание  ниш;

4) одна ниша находится внутри  другой.

Экологическая ниша – функциональная роль организма в сообществе и его положение относительно внешних факторов (трофическая ниша, пространственная, гиперпространственная) – как организм реагирует на природную среду, как он ограничен другими видами.

  1.  Лимитирующие факторы.

Лимитирующими (ограничивающими) экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием).

В середине XIX в. Ю. Либихом был установлен закон минимума: урожай зависит от фактора, находящегося в минимуме. Например, если фосфор содержится в почве лишь в минимальных количествах, то это снижает урожай. Но оказалось, что если это же вещество находится в избытке, это также снижает урожай. Более того, факторы могут действовать изолированно или совокупно — ведь урожай зависит и от влажности, и от других факторов жизни растений. Тем не менее, факторы не могут заменить друг друга, что и нашло отражение в законе независимости факторов В.Р. Вильямса: условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим. Например, нельзя заменить действие влажности действием углекислого газа или солнечного света и т. п.

Всю сложность взаимоотношения экологических факторов отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном смысле) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности.

Например, организм способен существовать при температуре от минус 5° С до плюс 25 °С. Это и будет диапазоном толерантности организма по отношению к температуре. Если этот диапазон небольшой, то организм называют стенотермным («стено» — узкий), если он достаточно широкий, то его называют эвритермным («эври» — широкий). Подобно температуре действуют и другие факторы, например, соленость воды и т. п., а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтамиили эврибионтами. Например, говорят: организм стенобионтен по отношению к солености, влажности, или эврибионтен по отношению к климатическим факторам. Эврибионтные организмы наиболее широко распространены на Земле.

Сформулируем основополагающие законы экологии.

1. ЗАКОН МИНИМУМА Ю. ЛИБИХА.

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а, следовательно, его присутствия или отсутствия в данной экосистеме”.

2. ЗАКОН ТОЛЕРАНТНОСТИ ШЕЛФОРДА.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер. Закон толерантности (лат. tolerantia — терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“. Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности. Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus — наилучший). Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum — наихудший). Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом.Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Камчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis — выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий  диапазон толерантности в отношении  одного фактора внешней среды  и узкий диапазон в отношении  другого.

2. Организмы с широким диапазоном  толерантности по большинству  факторов обычно наиболее широко  распространены.

3. Если условия по одному экологическому  фактору не оптимальны для  данного вида, то может сузиться  и диапазон толерантности по  другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон  толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos — узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys — широкий).

 

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью.

Близким к экологической пластичности является понятие экологической валентности, которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив — экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври-. Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености — стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету — стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению — они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

  1.  Понятие популяции. Иерархия популяций.

Популяция - это группа особей одного вида, занимающее определенное пространство и обладает многими признаками, которые характеризуют группу, как единое целое (плотность, рождаемость, смертность, биотический потенциал, характер распределения в пределах территории, генетическая приспособленность).

Популяционные признаки можно разделить на 2 категории:

-   признаки, связанные с количественным  соотношением и структурой

-   признаки, характеризующие  обще генетические особенности  популяции; показывающие способность  к адаптации, репродуктивная приспособленность, устойчивость.

В популяции, как в экосистеме, рассматривается биотический и абиотический компонент, т.к. большинство процессов проходящих в популяции связаны с окружающей средой.

Для популяции характерно: определенные внутривидовые отношения, наличие жизненного цикла, способность к самоподдержанию и т.п.

Основная характеристика популяции – плотность или численность.

Плотность – число особей на единицу площади или объема. Влияние популяции, оказываемое на сообщество или экосистему, зависит не только от того, сколько их, но и из каких организмов она состоит. Плотность популяции изменчива и характеризуется для каждой отдельной популяции, но, тем не менее, существуют определенные минимумы и максимумы, которые определяются потоком энергии и трофическим уровнем. Численность популяции всегда поддерживается на определенном постоянном уровне. Не менее важную роль играет и возрастная структура, типы роста популяции характеризуются S и  J образными кривыми.

Популяция представляет собой не хаотическое скопление особей, а устойчивое, имеющее определённую структуру образование. Особи популяции различаются по возрасту, полу, генотипу. но тесно связаны между собой. Большинство связей направлено на воспроизводство популяции, что определяется, прежде всего, взаимоотношениями между полами и возрастными группами. Длительное устойчивое существование популяции зависит от численности особей в ней. Однако численность для каждого вида различна, напр., численность популяции африканского слона может быть в несколько десятков особей, а атлантической сельди – в несколько тысяч. Численность популяции постоянно колеблется, но популяция не может длительно существовать, если её численность будет ниже некоторого предела, характерного для каждого вида. Внутри популяции случайное свободное скрещивание и «перемешивание» генофонда осуществляется легче и чаще, чем между различными территориально разобщёнными популяциями. Поэтому генотипическое сходство внутри популяции гораздо выше, чем за её пределами. Оно нарушается при возникновении у отдельных особей наследственных изменений (мутаций), которые в результате свободного скрещивания распространяются в популяции, что ведёт к её генетической гетерогенности (разнородности) и создаёт условия для действия естественного отбора. Таким образом, эволюционный процесс начинается с элементарных генетических событий в популяциях – микроэволюций. которые лежат в основе макроэволюционных процессов.

Популяция обладает биологическими свойствами, присущими составляющим ее организмам, и групповыми свойствами, присущими только популяции в целом. Как и отдельный организм, популяция растет, дифференцируется и поддерживает сама себя. Но такие свойства, как рождаемость, смертность, возрастная структура, характерны только для популяции в целом.

При описании популяций используют две группы количественных показателей: статические, характеризующие состояние популяции в какой-то определенный момент времени, и динамические, характеризующие процессы, протекающие в популяции за некоторый промежуток времени. Общая численность популяции выражается определенным количеством особей. Для ее оценки применяются различные методы. Если речь идет о крупных и хорошо заметных организмах, применяется аэрофотосъемка. В других случаях применяется метод мечения. Животных ловят, метят и отпускают обратно в природу. Через некоторое время производят новый отлов и по доле меченных животных определяют численность популяции.

Количественным показателем оценки популяции является плотность – численность популяции, отнесенная к единице занимаемого пространства. Для характеристики пространственного распределения особей применяют методы математической статистики, которые позволяют оценить дисперсию наблюдаемого распределения плотности и сопоставить ее со средним значением плотности.

Информация о работе Шпаргалка по "Экология"