Автор работы: Пользователь скрыл имя, 26 Декабря 2014 в 09:33, реферат
Однако речь идет не только об утверждении какой-то новой концепции, претендующей на общенаучное значение, а о создании новой познавательной модели, о новом направлении исследовательской деятельности, о выработке новой системы принципов научного мышления и нового категориального аппарата, о необходимости разработки и использования нового комплексного подхода к исследованию объектов и явлений.
Введение………………………………………………………………….
3
§1 Синергетика как наука самоорганизации…………………………..
4
§2 Открытые и закрытые системы в синергетике……………………..
6
§3 Энтропийные и неэнтропийные системы…………………………..
8
Заключение……………………………………………………………….
12
Литература……………………………………………………………….
14
Содержание
Введение………………………………………………………… |
3 |
§1 Синергетика как наука самоорганизации………………………….. |
4 |
§2 Открытые и закрытые системы в синергетике…………………….. |
6 |
§3 Энтропийные и неэнтропийные системы………………………….. |
8 |
Заключение…………………………………………………… |
12 |
Литература…………………………………………………… |
14 |
ВВЕДЕНИЕ
В 1970-е гг. начала активно развиваться теория сложных самоорганизующихся систем. Результаты исследований в области математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании — синергетики. Как и кибернетика, синергетика — это некоторый междисциплинарный подход. Но если в кибернетике акцент делается на процессах управления и обмена информацией, то синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.[1]
Эта направленность
процессов связывается с
Однако речь идет не только об утверждении какой-то новой концепции, претендующей на общенаучное значение, а о создании новой познавательной модели, о новом направлении исследовательской деятельности, о выработке новой системы принципов научного мышления и нового категориального аппарата, о необходимости разработки и использования нового комплексного подхода к исследованию объектов и явлений. Все это было объединено и получило термин, введенный Г. Хакеном, «синергетика».[2]
§1 Синергетика как наука самоорганизации.
Термин синергетика был предложен в начале 70-х годов для обозначения новой дисциплины, которая будет изучать общие законы самоорганизации. По Г. Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, "огромного") числа частей, компонент или подсистем, сложным образом взаимодействующих между собой.
Г. Хакен зафиксировал, что при переходе от неупорядоченности к порядку во всех явлениях возникает сходное поведение элементов, которое он назвал кооперативным, синергетическим эффектом. В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели.
Речь идет о междисциплинарной методологии для объяснения процесса возникновения некоторых макроскопических явлений в результате взаимодействий микроскопических элементов. В то же время, синергетику можно рассматривать как современный этап развития кибернетики и системных исследований, поэтому некоторые ученые предпочитают говорить не о синергетическом, а о системно-синергетическом анализе.
Несмотря на то, что синергетика возникла на стыке физики, химии, биологии, астрофизики, она вполне применима и к наукам о человеке: «Многие объекты, изучаемые в науках о человеке, могут, так или иначе, рассматриваться как системы. Такие объекты состоят из многих частей, взаимодействующих друг с другом более или менее сложным образом. Примером может служить общество, которое составляют люди. Через кооперацию отдельных частей у системы появляются новые качества, поэтому многие из этих качеств выявляют эффекты самоорганизации». По мнению Васильковой, «влияние синергетического подхода определяется, в первую очередь тем, что он позволяет создать универсальные объяснительные модели, которые обнаруживают глубинную общность социальных процессов самой разной природы как процессов социальной самоорганизации, сопрягаемых с общеэволюционной логикой мироупорядочивания».
Синергетическая модель самоорганизации является на сегодняшний день наиболее обобщающей и наиболее эвристически плодотворной объяснительной моделью, описывающей взаимные переходы порядка и хаоса в эволюции систем, в том числе и социальных. Предмет синергетики охватывает все этапы универсального процесса самоорганизации как процесса эволюции порядка – его возникновения, развития и разрушения. Иными словами, синергетику можно считать интегральной теорией порядка и хаоса, изучающей закономерности возникновения порядка из хаоса, описание причин и механизмов относительно устойчивого существования возникающих структур и их распада.
Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты — точки бифуркации. Вблизи точек бифуркаций в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает.[3]
Таким образом, синергетика - это наука о самоорганизации – феномена согласованного действия элементов сложной системы без управляющего воздействия извне.
§2 Открытые и закрытые системы в синергетике
Закрытая система – система ограниченная от окружающего мира. Взаимодействие происходит только внутри системы между ее структурными компонентами.
В противоположность закрытой системе, открытая система функционирует благодаря взаимодействию с окружающим миром. Первостепенное значение при этом имеет обмен энергией и информацией с окружающей средой, представленной системами разного калибра.[4] Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному неравновесному состоянию. Открытые системы – это системы необратимые; в них важным оказывается фактор времени[5].
Основная черта действующих систем в том, что происходит изменение. Как внутри системы, так и между системами происходит перераспределение энергии, информации и ресурсов, именуемые Флуктуацией. Все обмены происходят на основе трех принципов.
1. При обыкновенных условиях
перераспределение ресурсов
2. Производимые изменения
зависят не только от
3. Движение в обратном
направлении определенного
В открытых системах ключевую роль – наряду с закономерным и необходимым могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается[7].
Класс систем, способных к самоорганизации, это открытые нелинейные системы. Открытость системы означает наличие в ней источников и стоков, обмена веществом и энергией с окружающей средой. Причем когда речь идет об источнике. Обычно возникает образ некоего точечного или, во всяком случае, локализованного источника. Иначе обстоит дело в случае самоорганизующихся систем. Источники и стоки имеют место в каждой точке таких систем. Это, как говорят, – объединенные источники и стоки. Процессы обмена происходящие только через границы самоорганизующейся системы, но и в каждой точке данной системы.
Открытость системы – необходимое, но не достаточное условие для самоорганизации: т.е. всякая самоорганизующаяся система открыта, но не всякая открытая система самоорганизуется, строит структуры. Все зависит от взаимной игры, соревнования двух противоположных начал: создающего структуры, наращивающего неоднородности в сплошной среде (работы объемного источника), и рассеивающего, размывающего неоднородности начала самой различной природы. Рассеивающее начало в неоднородной системе может пересиливать, перебарывать работу источника, размывать все неоднородности, создаваемые им. В таком режиме структуры не могут возникнуть.
Но с другой стороны, и при полном отсутствии диссипации, организация спонтанно возникнуть не может. Диссипация в среде с нелинейными источниками играет роль резца, которым скульптор постепенно, но целеустремленно отсекает все лишнее от каменной глыбы. А поскольку диссипативные процессы, рассеяние есть по сути дела, макроскопические проявления хаоса, постольку хаос на макроуровне – это не фактор разрушения, а сила, выводящая на аттрактор, на тенденцию самоструктурирования нелинейной среды.
Эффект создания структур в открытой нелинейной среде связывают с эффектом локализации. Сугубо внутренний и спонтанный эффект локализации порождается именно неравновесностью и открытостью системы. Причем роль источников и стоков энергии неравноценны. За счет стоков могут образовываться стационарные структуры. В данном случае внимание направленно на иного рода эффект локализации – на создание нестационарных (эволюционирующих) структур за счет нелинейных источников энергии[8].
§3 Энтропийные и неэнтропийные системы
Объект изучения классической термодинамики – закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой. Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом, в закрытой системе энергия сохраняется.
Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно второму началу термодинамики, запас энергии во Вселенной иссякает, а вся Вселенная приближается к «тепловой смерти».[9]
Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.[10]
Вместе с тем, биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее в противоположном направлении – от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук - долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только с переходом естествознания к изучению открытых систем появилась такая возможность.
Открытые системы, в которых наблюдается прирост энтропии, называют диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного хаотического движения, в тепло. Если замкнутая система, выведенная из состояния равновесия, всегда стремится вновь придти к максимуму энтропии, то в открытой системе отток энтропии может уравновесить ее рост в самой системе и есть вероятность возникновения стационарного состояния. Если же отток энтропии превысит ее внутренний рост, то возникают и разрастаются до макроскопического уровня крупномасштабные флюктуации, а при определенных условиях в системе начинают происходить самоорганизационные процессы, создание упорядоченных структур.
При изучении систем, их часто описывают системой дифференциальных уравнений. Представление решения этих уравнений как движения некоторой точки в пространстве с размерностью, равной числу переменных называют фазовыми траекториями системы. Поведение фазовой траектории показывает, что существует несколько основных его типов, когда все решения системы в конечном счете сосредотачиваются на некотором подмножестве, называемое аттрактором. Аттрактор имеет область притяжения, множество начальных точек, таких, что при увеличении времени все фазовые траектории, начавшиеся в них стремятся именно к этому аттрактору. Основными типами аттракторов являются устойчивые предельные точки, устойчивые циклы (траектория стремится к некоторой замкнутой кривой) и торы (к поверхности которых приближается траектория). Движение точки в таких случаях имеет периодический или квазипериодический характер. Существуют также характерные только для диссипативных систем так называемые странные аттракторы, которые, в отличие от обычных не являются подмногообразиями фазового пространства и движение точки на них является неустойчивым, любые две траектории на нем всегда расходятся, малое изменение начальных данных приводит к различным путям развития. Иными словами, динамика систем со странными аттракторами является хаотической.
Замечательным является строение странных аттракторов. Их уникальным свойством является скейлинговая структура или масштабная самоповторяемость. Это означает, что увеличивая участок аттрактора, содержащий бесконечное количество кривых, можно убедиться в его подобии крупномасштабному представлению части аттрактора. Объекты, обладающие способностью бесконечно повторять собственную струкуру на микроуровне называются фракталами.
Для динамических систем, зависящих от некоторого параметра, характерно, как правило, плавное изменение характера поведения при изменении параметра. При дальнейшем изменении параметра возможно возникновение торов и далее странных аттракторов, то есть хаотических процессов.