Автор работы: Пользователь скрыл имя, 24 Марта 2014 в 22:00, доклад
Когда великий итальянский ученый Г. Галилей направил построенный им телескоп в небо, он открыл мир громадных, ни с чем до того не сравнимых протяженностей. Сопоставив движение спутников Юпитера, которое он наблюдал с помощью телескопа, с движением планет, Галилей на опыте убедился в правильности предсказанной Коперником "системы" мира. Ему удалось увидеть фазы Венеры, различить отдельные звезды Млечного Пути. [1]
Введение
Жизнь на Земле возникла и существует благодаря лучистой энергии солнечного света. Если бы на нашей планете не было атмосферы, которая лишь частично пропускает энергию Солнца к земной поверхности, то в полдень на поверхность земного шара падало бы 8,37 Дж на 1 см2 за минуту. Эта величина называется солнечной постоянной и определена по измерениям вне атмосферы с помощью приборов, установленных на ракетах.
Можно подсчитать, что за одну секунду свет приносит на нашу планету энергию, которая выделилась бы при сгорании 40 млн. т каменного угля.[1]
Костер первобытного человека, нефть, сгорающая в двигателях машин, топливо космической ракеты — все это световая энергия, запасенная когда-то растениями и животными. Остановись солнечный поток, и на Землю выпадут дожди из жидкого азота и кислорода. Температура приблизится к абсолютному нулю. Семиметровый панцирь из замерзших атмосферных газов покроет земную поверхность. Только иногда в этой ледяной пустыне встретятся лужицы жидкого гелия. [1]
Не только энергию несет на Землю свет. Благодаря световому потоку мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете. [1]
Свет, усиленный оптическими приборами, открывает человеку два полярных по масштабам мира: космический мир с его огромными протяженностями и микроскопический, населенный не различимыми простым глазом мельчайшими организмами. [1]
Когда великий итальянский ученый Г. Галилей направил построенный им телескоп в небо, он открыл мир громадных, ни с чем до того не сравнимых протяженностей. Сопоставив движение спутников Юпитера, которое он наблюдал с помощью телескопа, с движением планет, Галилей на опыте убедился в правильности предсказанной Коперником "системы" мира. Ему удалось увидеть фазы Венеры, различить отдельные звезды Млечного Пути. [1]
Сегодня построены совершенные телескопы, в которые видны звезды, светящиеся в миллион раз слабее звезд, различимых невооруженным глазом; найдены способы узнавать по характеру светового потока, какие химические элементы содержатся в излучающем теле, какова его температура, магнитное поле, скорость. [1]
Получается так, что в звездном свете содержатся данные о строении звезды, о составе космического вещества и о многом другом, с чем соприкасался свет. Разлагая собранный телескопом свет на отдельные составляющие, астрономы расшифровали разнообразные сведения, записанные на световой волне, обнаружили в космосе раньше, чем в земных лабораториях, два химических элемента — солнечный гелий и звездный технеций. Был установлен замечательный факт. Оказалось, что звездное вещество состоит из точно таких же атомов, как и земное. [1]
Анализ состава света, испускаемого отдаленными скоплениями звезд — галактиками, привел к неожиданному открытию: галактики "разбегаются" друг от друга с очень большой скоростью, а это означает расширение нашей Вселенной!
Почти через 50 лет после первых астрономических открытий Галилея голландец А. Левенгук заглянул в каплю воды через изготовленные им микроскопы и открыл удивительный микроскопический мир. [1]
Почти 300 лет с момента открытия Левенгука световая волна служит для исследования не видимых простым глазом мельчайших объектов. За это время ученые поняли значение бактерий и зеленого вещества — хлорофилла для жизни, доказали клеточное строение живых организмов, открыли вирусы, создали целые разделы наук, которые мы смело можем назвать микроскопическими, как, например, наука о клетке — цитология. [1]
Конечно, не только проникновению в космический и микроскопический миры мы обязаны свету. Ничуть не меньше значение светового луча и в других областях деятельности человека. Оптические приборы, даже если они установлены на летящем высоко самолете, определяют сорт нефти, разлитой по поверхности моря. В руках хирурга лазерный луч становится световым скальпелем, пригодным для сложных операций на сетчатке глаза. Этот же луч на металлургическом заводе режет массивные листы металла, а на швейной фабрике раскраивает ткани. Световой луч передает сообщения, тонко и деликатно управляет химическими реакциями. [1]
Что такое свет
Свет - это электромагнитное излучение, невидимое для глаза. Свет становится видимым при столкновении с поверхностью. Цвета образуются из волн разной длины. Все цвета вместе образуют белый свет. При преломлении светового луча в призме или капле воды весь спектр цветов становится видимым, например, радуга. Глаз воспринимает диапазон т.н. видимого света, 380 - 780 нм, за пределами которого находятся ультрафиолетовый (УФ) и инфракрасный (ИК) свет.[1]
Глаз хорошо приспособлен к встречающимся в природе большим колебаниям освещения, таким как, свет луны = 1 люкс, яркий свет солнца = 100 000 люкс. При искусственном освещении нам приходится, как правило, довольствоваться меньшими колебаниями, такими как, общее освещение ок. 1 - 200 люкс, рабочее освещение 200 - 2000 люкс (для офисного освещения рекомендуется не менее 500 люкс). [2]
Видение основывается на свете, глаз любопытен, он ищет света, чтобы видеть. Из всей информации мы принимаем 80% через глаза. Поэтому можно сказать, что свет всегда о чем-то повествует. При входе в помещение, наш взгляд обходит его под руководством света, и он рассказывает нам о помещении, его формах, цветах, архитектуре, интерьере, предметах декорации и т.д. При хорошем освещении глазу легко и приятно видеть. [2]
С точки зрения видения качественные свойства света часто важнее, чем количественные. Качественные свойства света: не ослепляет - прямое ослепление - косвенное ослепление = блеск - хорошее воспроизведение цвета - блестящий контраст - правильная цветовая температура - не сверкающий свет. [2]
В отношении ослепления можно говорить о хороших и плохих люксах. Например, при езде на машине, свет собственных фар - "хорошие люксы", потому что он помогает нам видеть, а свет фар встречной машины - "плохие люксы", поскольку он мешает нам видеть (ослепление). Ослепление не зависит напрямую от количества света, а от разной яркости поверхностей, например, яркое освещение на темной поверхности. Косвенное ослепление имеет место при неправильном направлении поступления света. Чтению журнала может, например, воспрепятствовать блеск, заставляющий изменить положение по отношению к направлению поступления света. [2]
Степень воспроизведения цвета характеризуется индексом Ra. Индекс Ra у ламп накаливания, к которым относятся также и галогенные лампы, - 100. Спектр у лампы накаливания, так же как и у солнечного света, сплошной. Цветопередача у люминесцентной лампы варьируется в зависимости от качества. Индекс Ra у высококачественных люминесцентных ламп - 90. Индекс Ra лучшей из газоразрядных ламп - металлогалогенной - превышает 80. Хорошее воспроизведение цвета существенно, например, при освещении людей, яркого произведения искусства и т. п.[2]
Цветовая температура выражается в кельвинах K. В натуре цветовая температура меняется в зависимости от времени суток: Утренняя и вечерняя заря могут быть весьма теплыми, например, 2500 K, а полуденное небо весьма холодным (синеватым), например, 8000 K. В домашнем освещении применяются обычно источники света теплых тонов, 2700 - 3000 K. На рабочих местах применяются слегка более холодные тона, 3000 - 4000 K. [2]
Примеры цветовых температур: стандартная лампа накаливания ок. 2700 K, галогенная ок. 3000 K, люминесцентные лампы 2700 - 8800 K. Выбор цветовой температуры имеет существенное влияние на атмосферу в помещении. Если в одном помещении, например, горят одновременно источники света разных цветовых температур, получается сумбурное впечатление. При слабых освещенностях применяются более теплые тона, при сильных - более холодные, как в природе. [2]
Свет как экологический фактор
Свет является одним из важнейших абиотических факторов. Солнце излучает в космическое пространство громадное количество лучистой энергии. 42% всей падающей радиации (33% + 9%) отражается атмосферой в мировое пространство, 15% поглощается в толще атмосферы и идет на нее нагревание только 43% достигает земной поверхности. Эта доля радиации состоит из прямой радиации (27%) – почти параллельных лучей, идущих непосредственно от солнца и несущих наибольшую энергитическую нагрузку, (16%) – лучей, поступающих к земле со всех точек небосвода, рассеянных молекулами газов воздуха, капельками водяных паров, кристалликами льда, частицами пыли, а также отраженных вниз от облаков. Общую сумму прямой и рассеянной радиации называют суммарной радиацией. [3]
Свет для организмов служит с одной стороны первичным источником энергии, без которого невозможна жизнь, а с другой стороны - прямое воздействие света на протоплазму смертельно для организма. Таким образом, многие морфологические и поведенческие характеристики связаны с решением этой проблемы. Эволюция биосферы в целом была направлена главным образом на "укрощение" поступающего солнечного излучения, использование его полезных составляющих и ослабление вредных или на защиту от них. Следовательно, свет - это не только жизненно важный фактор, но и лимитирующий, как на минимальном, так и максимальном уровнях. С этой точки ни один из факторов так не интересен для экологов, как свет! [3]
Среди солнечной энергии, проникающей в атмосферу Земли, на видимый свет приходится около 50% энергии, остальные 50% составляют тепловые инфракрасные лучи и около 1% - ультрафиолетовые лучи. [3]
Видимые лучи ("солнечный свет") состоят из лучей разной окраски и имеют разную длину волн.
В жизни организмов важны не только видимые лучи, но и другие виды лучистой энергии, достигающие земной поверхности ультрафиолетовые, инфракрасные лучи, электромагнитные (особенно радиоволны) и некоторые другие излучения. [3]
Влияние света на человека
Все знают, что сила солнечного света столь велика, что он способен контролировать циклы природы и биоритмы человека. Свет, в действительности, связан с нашими эмоциями, с ощущением комфорта, безопасности, а также тревоги и беспокойства. Однако, во многих областях современной жизни свету не уделяется нужное внимание. [5]
На вопрос о том, что самое важное в жизни, большинство людей отвечают - здоровье. В то время, как здоровое питание, фитнесс и вопросы экологии широко освещаются на страницах газет, журналов и интернет-сайтов, вопросы правильного и здорового освещения не затрагиваются вовсе. Наиболее известные аспекты освещения - это влияние УФ-излучения в летнее время, а также его способность бороться с зимней депрессией и некоторыми кожными заболеваниями. Остальные вопросы освещения обсуждаются лишь в узком кругу профессионалов, а большинство людей не задумываются о широких возможностях влияния света на наше физическое и моральное состояние. [4]
Отношения между светом и человеком претерпели значительные изменения за последние 100 лет с началом индустриализации. Сейчас мы проводим большую часть своего времени в закрытых помещениях с искусственным светом. Многие составные части спектра естественного света важные для нашего здоровья, теряются, проходя через стекло. По мнению светотерапевта Александра Вунша, человек на протяжении всей эволюции приспосабливался к спектру солнечного излучения и для хорошего здоровья ему необходимо получать именно полный спектр. Многие возмещают недостаток солнечного света прогулками в парке, по пляжу или отдыхом на балконе. Впервые эффект сезонного расстройства описал доктор Норманн Розенталь. Позднее был проведен эксперимент среди жителей Норвегии, где 49 дней в году длится ночь. Люди, живущие в таких условиях, часто чувствуют себя уставшими, им трудно просыпаться и приниматься за работу, многих преследуют депрессии и апатичные состояния. Зато день, когда возвращается солнце, отмечается как праздник "День Солнца" и встречается слезами радости. [4]
Наблюдения показывают, что существует специфическая связь между освещением и чувством комфорта. Также они показывают, что естественное освещение всегда более благоприятное и удобное для всех обычных видов деятельности. Многие архитектурные проекты демонстрируют абсолютное пренебрежение дневным светом. Офисные и торговые здания без окон, в которых люди проводят многие часы, не видя солнца и не понимая какое время суток и года снаружи. Увеличивая проникновение дневного света в офисы можно, в конечном счете, сократить число пропусков из-за болезней сотрудников и улучшить рабочую атмосферу в офисе. [4]
Постепенно ситуация со световыми аспектами в архитектуре улучшается, однако, ввиду недостаточно качественного образования в этой области, многие архитекторы не в полной мере учитывают важность работы и планирования освещенности. По мнению профессора Университета Прикладных Наук Hildesheim в Германии, Андреаса Шульца, все зависит от архитектора, однако, подавляющее большинство проектов, строится без привлечения специалиста по дизайну освещения. [4]
Поскольку внутри зданий количество дневного света недостаточное для того, чтобы удовлетворять потребности человека в нем, электрические источники призваны компенсировать этот недостаток. Все источники искусственного света в той или иной степени пытаются имитировать дневной свет, некоторые делают это очень хорошо. Александр Вунш изучал влияние различного света на человека и пришел к выводам, что любое отклонение от спектра естественного света несет в себе вредный для здоровья потенциал. Эксперименты на эту тему проводились уже давно, в 1973 году Джон Отт изучал две группы детей, занимающихся в комнатах без окон. В одной комнате освещение было максимально приближенным к естественному, за счет использования ламп полного спектра, а в другой использовались обычными люминесцентные лампы. В результате, дети, занимающиеся в комнате с люминесцентными лампами, были сперва гиперактивны, а затем сильно уставали и теряли способность к концентрации, также отмечалось и повышение давления. [4]
Александр Вунш недавно протестировал ряд современных искусственных источников света на предмет биологического влияния, которое они оказывают на человека в сравнении с естественным светом. Профессор пришел к выводу, что наиболее близким к естественному спектром, обладает лампа накаливания. [4]
Результаты подобных исследований редко становятся известны широкой публике. Дело в том, что большинство людей мало понимают в таких вопросах. Кроме того, в разных культурах по-разному ценят окружающую среду и ее дары. Для большинства из нас свет настолько привычное сопровождение нашей жизни, что мы не задумываемся над его разнообразными свойствами, которые влияют на нашу жизнь в моральном и физическом плане. Подобно воздуху, который мы не замечаем, свет воспринимается как данность, до тех пор, пока мы не почувствуем его недостаток или дискомфорт при контакте, например, со слишком яркой лампочкой. Многие не отдают себе отчета, что испытывают усталость на рабочем месте из-за плохой освещенности, поскольку это не всегда очевидно. [4]