Автор работы: Пользователь скрыл имя, 27 Февраля 2013 в 08:25, курсовая работа
Целью данной курсовой работы проанализировать комплексное использование морской воды и способы ее получения.
Для достижения данной цели выделены следующие задачи:
1. Рассмотреть роль морской воды в жизни человека;
Введение…………………………………………………………………………….4
1Морская вода в жизни человека………………………………………………….5
1.1Океан, как источник питания……………………………………………..6
1.2 Океаническая вода, как источник химического минерального сырья...7
1.3 Энергия морской воды…………………………………………………..11
1.3.1 Использование энергии приливов……………………………...11
1.3.2 Использование энергии волн…………………………………...13
1.3.3 Использование термической энергии………………………….15
2 Загрязнение вод мирового океана……………………………………………...16
2.1 Нефтяное загрязнение…………………………………………………...18
2.2 Загрязнение сточными отходами промышленных и бытовых вод…...20
2.3 Радиоактивное загрязнение вод мирового океана……………………..22
3 Пресная вода, как составная часть морской воды…………………………….24
3.1 Опреснение морской воды………………………………………………24
3.2 Методы опреснения морской воды……………………………………..25
3.2.1 Химическое опреснение………………………………………...25
3.2.2 Дистилляция……………………………………………………..25
3.2.3 Ионный обмен…………………………………………………...28
3.2.4 Обратный осмос…………………………………………………29
3.2.5 Электроосмос……………………………………………………30
3.2.6 Электродиализ…………………………………………………..31
3.2.7 Замораживание…………………………………………………..32
Заключение………………………………………………………………………...34
Список использованных источников………
3.1 Опреснение морской воды
Высокая концентрация солей делает морскую воду непригодной для питьевых и хозяйственных целей. Поэтому её необходимо опреснять, т.е. проводить обработку с целью снижения концентрации растворённых солей до 1 г/л. Опреснение воды может осуществляться химическими (химическое осаждение, ионный обмен), физическими (дистилляция, обратный осмос или гиперфильтрация, электродиализ, вымораживание) и биологическими методами с использованием способности некоторых фотосинтезирующих водорослей избирательно поглощать NaCl из морской воды.
За последние годы были также предложены новые альтернативные методы опреснения морской воды за счёт воздействия ультразвуком, акустическими, ударными волнами, электромагнитными полями и др.
Многообразие существующих методов получения пресной воды объясняется тем, что ни один из них не может считаться универсальным, приемлемым для данных конкретных условий.
3.2 Методы опреснения морской воды
3.2.1 Химическое опреснение
Этот метод основан на переводе растворенных солей в нерастворимые соединения, которые выпадают в осадок и удаляются. Применяемые реактивы меняются в зависимости от солевого состава опресняемой воды. К примеру, избыток солей магния осаждается содой, а сульфаты могут быть удалены обработкой гидратом окиси бария [12].
Метод химического опреснения требует использования дорогостоящих реактивов, каждый из которых направлен на строго определенную примесь воды, реагенты не подвергаются регенерации. По этой причине данный метод имеет очень ограниченное применение.
3.2.2 Дистилляция
Дистилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара. Процесс осуществляется в специальных дистилляционных установках — опреснителях путем частичного испарения воды и последующей конденсации пара. В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий). Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток — высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию.
Дистилляционная опреснительная установка состоит из испарителя, снабженного теплообменным устройством для подвода к воде необходимого количества теплоты; нагревательного элемента для частичной конденсации пара, выходящего из испарителя (при фракционной дистилляции); конденсатора для конденсации отбираемого пара; насоса; сборников дистиллята и кубового остатка.
Современные дистилляционные опреснители подразделяются на одноступенчатые, многоступенчатые с трубчатыми нагревательными элементами, или испарителями, многоступенчатые с мгновенным вскипанием и парокомпрессионные.
Многоступенчатый испаритель состоит из ряда последовательно работающих испарительных камер с трубчатыми нагревательными элементами. Нагреваемая солёная вода движется внутри трубок нагревательного элемента, греющий пар конденсируется на внешней поверхности. При этом нагрев и испарение воды в первой ступени осуществляются паром рабочего котла, работающего на дистилляте; греющим паром следующей ступеней служит вторичный пар предыдущей испарительной камеры. Данная установка способна вырабатывать около 0.9 т пресной воды на 1 т первичного пара. Расход тепла на получение 1 кг пресной воды в одноступенчатом дистилляционном опреснителе составляет около 2400 кдж [12].
В опреснителях с мгновенным вскипанием солёная вода проходит последовательно через конденсаторы, встроенные в испарительные камеры, нагреваясь за счёт тепла конденсации, затем поступает в главный подогреватель и нагревается выше температуры кипения воды в первой испарительной камере, где происходит процесс кипения. Затем пар конденсируется на поверхности трубок конденсатора, а конденсат стекает в конденсатор и насосом откачивается потребителю. Неиспарившаяся вода перетекает через гидрозатвор в следующую камеру с более низким давлением, где она снова вскипает, и т.д. Рекуперация тепла фазового перехода в многоступенчатом опреснителе позволяет снизить расход тепла по сравнению с одноступенчатым дистилляционным опреснителем на 1 кг пресной воды до 250—300 кдж.
Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0.9 т опресненной воды, а на установках, имеющих 50–60 ступеней – 15–20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5–4,5 кВт час/м3 дистиллята.
Затраты при осуществлении любого варианта процесса дистилляции связана с большими затратами тепловой энергии, составляющими 40% от стоимости получаемой воды (если проводить дистилляцию в вакууме, температура кипения воды понижается до 60 0С и дистилляция требует меньших тепловых затрат). В качестве источников тепловой энергии используются атомные и тепловые электростанции. Сочетание дистилляционной установки с тепловой электростанцией на минеральном или ядерном топливе, так называемая многоцелевая энергетическая установка, позволяет обеспечить промышленный район всеми видами энергетических услуг по минимальной себестоимости при наиболее рациональном использовании топлива. В пустынных южных районах и на безводных островах применяются солнечные опреснители; которые производят в летние месяцы около 4 л воды в сутки с 1 м2 поверхности, воспринимающей солнечную радиацию.
Эффективность работы дистилляционных испарителей ограничена образованием накипи в системе циркуляции горячего рассола. По мере выпаривания морской воды из дистилляционного опреснителя, раствор соли становится более концентрированным, и в конечном итоге осаждается на стенках аппарата в виде накипи из солей жёсткости, состоящих, главным образом, из хлоридов и карбонатов кальция (CaCO3,CaCl2) и магния (MgCO3, MgCl2 ), что ухудшает теплопроводность стенок теплообменника, приводит к разрушению труб и теплообменного оборудования. Это требует применения специальных антинакипных добавок, что существенно увеличивает энергозатраты на проведение дистилляции до 10 кВт час/м3 обессоленной воды. Поэтому в последние годы предложены другие способы опреснения морской воды, которые не связаны с необходимостью ее испарения и конденсации.
3.2.3 Ионный обмен
Метод основан на свойстве некоторых веществ, обратимо обмениваться ионами с растворами солей. Эти вещества называют ионообменными смолами. Это своего рода твердые электролиты, которые делятся на катиониты и аниониты.
Катиониты — вещества типа твердых кислот, у которых анионы представлены в виде нерастворимых в воде полимеров [13].
Аниониты — по своей сути твердые основания, нерастворимую структуру которых образуют катионы. Их анионы (обычно это гидроксильная группа) подвижны и могут обмениваться с анионами растворов.
Химический механизм работы ионообменных смол заключается в последовательном прохождении воды через катионит и анионит. В итоге из воды удаляются катионы и анионы и она тем самым обессаливается. Обменная способность ионообменных смол (ионитов) не бесконечна, постепенно она снижается, и, в конце концов, исчерпывается вовсе. В этом случае требуется регенерация раствором кислоты (катионит) или щелочи (анионит), что полностью восстанавливает исходные химические свойства смол. Эта ценная особенность позволяет использовать их в течение длительного времени.
Сложная процедура использования ионообменных смол и их последующей регенерации требует автоматизации, сложной системы управления и необходимое оборудование является довольно громоздким, что ограничивает его применение в быту. В настоящее время данный метод часто включается как один из элементов процесса водоподготовки в частных домах с автономной системой водоснабжения.
3.2.4 Обратный осмос
При опреснении воды методом обратного осмоса пресную воду отделяют от растворенных в ней солей при помощи мембраны, проницаемой для воды, но непроницаемой для солей. Для этого необходимо наличие селективной мембраны, пропускающей только воду, но задерживающей растворенные в ней вещества. Если поместить такую мембрану между рассолом и пресной водой, тенденция к выравниванию концентраций по обе стороны мембраны заставит воду проникать через мембрану в рассол. Этому процессу можно воспрепятствовать, прикладывая давление со стороны рассола. При достаточно большом давлении проникновение воды через мембрану в рассол прекратится. Давление, необходимое, чтобы воспрепятствовать просачиванию воды через мембрану в раствор, называется осмотическим. Для морской воды при нормальных условиях осмотическое давление составляет приблизительно 25 атм.
Если прикладываемое к рассолу давление превысит осмотическое, то вода будет проходить через мембрану в обратном направлении, другими словами, пресная вода будет выдавливаться из рассола через мембрану. Этот процесс, называемый обратным осмосом, схематически показан. Морскую или солоноватую воду накачивают под высоким давлением в камеры, стенки которых изготовлены из полупроницаемых мембран. При прохождении воды через мембраны локальная концентрация солей у стенки мембраны повышается, что приводит к повышению осмотического давления и уменьшению потока пресной воды. Чтобы воспрепятствовать этому, через камеру нужно непрерывно прокачивать морскую воду. Поток пресной воды через мембрану пропорционален прикладываемому давлению. Максимальное давление, которое можно приложить к мембране, определяется ее собственными характеристиками. При слишком высоком давлении мембрана может разорваться, забиться присутствующими в воде примесями или пропускать слишком большое количество растворенных солей.
Давление, создаваемое насосом высокого давления, превышает осмотическое давление соленой воды относительно пресной. Благодаря этому пресная вода просачивается через полупроницаемую мембрану. Чтобы предотвратить накопление соли вблизи мембраны, насос должен постоянно прокачивать по трубам соленую воду. На практике трубы должны иметь очень малый диаметр, и поэтому установку приходится изготовлять из многих тысяч труб. В обычных установках по опреснению воды методом обратного осмоса трубы изготавливают из пористого вещества, выложенного с внутренней стороны тонкой пленкой из ацетата целлюлозы [4].
Ацетат целлюлозы (из которого изготовляют целлофан и основу фотографической пленки) играет роль полупроницаемой мембраны. Установка состоит из множества таких труб, уложенных параллельно друг другу. Скорость проникновения воды через мембрану довольно невелика. Например, при опреснении соленой воды из скважины, содержащей 0,5% растворенных солей, при давлении 50 атм в течение суток удается получить приблизительно 700 л пресной воды с каждого квадратного метра мембраны. Поскольку для получения большой площади поверхности необходимо очень много тонких труб, процесс обратного осмоса пока еще не используется для получения больших количеств пресной воды. Однако этот процесс представляется многообещающим, если будут разработаны улучшенные мембраны, в особенности для опреснения соленой воды из скважин. Эта вода имеет более низкую концентрацию растворенных солей по сравнению с морской водой, что позволяет проводить ее опреснение при более низких давлениях.
3.2.5 Электроосмос
Опреснение на принципе электроосмоса производится в специальных аппаратах, представляющих собой электролитическую ванну, разделенную двумя полупроницаемыми мембранами на три отделения. Исходная вода подается в среднюю камеру. Ионы находящихся в воде солей устремляются сквозь мембраны к электроду, имеющему противоположный заряд. Чистая вода остается в средней камере.
Данный метод требует затрат электроэнергии, хотя и является достаточно эффективным. Эффективность составляет более 90%, достигая в некоторых случаях 96%. Мембраны имеют ограниченный срок службы, который максимально составляет 5 лет, а при неблагоприятных условиях эксплуатации — значительно меньше. Кроме того, этот метод, как и большинство других методов использующих полупроницаемые мембраны, требует предварительной подготовки очищаемой воды.
Есть и еще одна особенность, которая значительно ограничивает применение данного метода. Это то, что все вещества, которые не превратились при растворении в ионы, не реагируют на электрическое поле. Т.е. большинство органических веществ, бактерий, вирусов и т.п. останется в растворе.
3.2.6 Электродиализ
Данный процесс мембранного разделения основан на способности ионов, растворённых в воде солей, перемещаться через мембрану под действием градиента электрического поля. При этом катионы перемещаются по направлению к отрицательному электроду (катоду), а анионы движутся в противоположном направлении к положительно заряженному электроду (аноду). Катионы и анионы разделяют, используя специальные проницаемые для ионов ионоселективные мембраны. В результате в ограниченном мембранами объёме, происходит снижение концентрации солей.
Ионоселективные мембраны, применяемые для электродиализа, изготовляют из термопластичного полимерного материала (полиэтилен, полипропилен) и ионообменных смол (КУ-2, ЭДЭ-10П и др.) в виде гибких листов прямоугольной формы. Они имеют большую механическую прочность, высокую электропроводность и высокую проницаемость для ионов. Кроме того, они обладают высокой селективностью и низким электросопротивлением, которое составляет от 2 Ом/см2 до 10 Ом/см2 на единицу поверхности ионообменной мембраны. Срок службы мембран в среднем 3–5 лет [13].
Электродиализные опреснители представляют собой многокамерные аппараты фильтр-прессового типа, состоящие из камер, ограниченных с одной стороны катионитовой, с другой — анионитовой мембранами, разделяющими объём аппарата на множество полостей. Камеры размещены между катодом и анодом, к которым подведён постоянный электрический ток.
Информация о работе Вода. ЕЕ комплексное использование и способы получения