Автор работы: Пользователь скрыл имя, 17 Января 2014 в 14:53, контрольная работа
Целлюлозно-бумажная промышленность относится к ведущим отраслям народного хозяйства, так как Россия располагает огромными лесосырьевыми ресурсами. Кроме того велика потребность в продукции этой отрасли, как в России, так и за рубежом, и это определяет большой объём выпускаемой продукции. Продукцией целлюлозно-бумажной промышленности являются различные виды волокнистых полуфабрикатов (в т.ч. сульфитная и сульфатная целлюлоза), бумага , картон и изделия из них. Побочные продукты отрасли: кормовые дрожжи, канифоль, скипидар, жирные кислоты и др.
Однако возникает ряд
трудностей, сопряжённых с традиционным
подходом к проблеме очистки: образование
труднообрабатываемых стоков и шламов
при абсорбционном методе очистки,
необходимость регенерации
В настоящее время в ЦБП для очистки выбросов из РП СРК применяются:
Двухступенчатые схемы обычно состоят из теплообменных устройств в качестве первой ступени и скруббера или струйного газопромывателя – в качестве второй, например, принципиальная двухступенчатая схема: трёхходовой по ходу газов теплообменник является первой ступенью, струйный газопромыватель – второй. Анализ работы установок на Братском ЛПК и Байкальском ЦБК показывает, что эффективность улавливания пылевых частиц составляет 70…80 %, а абсорбция сероводорода 92…95 %. Реализация двухступенчатой схемы очистки выбросов из РП СРК связана со значительными капиталовложениями, так как кроме теплообменника и струйного газопромывателя он включает в себя каплеуловитель, промежуточные ёмкости, насосы, разветвлённую систему трубопроводов. Установка энергоёмка и металлоёмка, требует значительного количества свежей воды для теплообменника и орошающих растворов. Необходимость применения тягодутьевых устройств в данной схеме приводит к большому выносу щёлочной капельной влаги в атмосферу, что снижает надёжность работы тягодутьевых устройств, увеличивает потери химикатов, разрушает кровлю цеха и загрязняет атмосферу.
Конденсационный метод очистки газов и аппарат – поверхностный конденсатор.
Метод основан на конденсации водяного пара на охлаждённой поверхности конденсатора. При этом пар, охлаждаясь, переходит в жидкую фазу, а образующийся конденсат непрерывно отводится. Аппарат действует при использовании самотяги вытяжной трубы. Симметричное расположение конденсатора и вытяжной трубы относительно оси движения парогазовой смеси вверх в межтрубном пространстве позволяет избежать застойных зон. Работа установки заключается в следующем: конденсатор представляет собой две трубы, одна внутри другой, между которыми располагается вытяжная труба, в которой идёт пылепарогазовая смесь. В полости двух труб конденсатора подаётся охлаждающий агент – вода, в результате находящийся внутри вытяжной трубы пылепарогаз начинает конденсироваться на охлаждаемых стенках и стекать по ней в отборник конденсата. Процесс газоочистки регулируется по температуре воды на выходе из аппарата. Большое значение имеет осуществление тепло- и массообмена в конденсаторе, где можно достичь взаимодействия между плёнкой конденсата, образующегося на поверхности охлаждаемых труб, и потоком пылепарогазовой смеси с минимальными энергозатратами.
В аппаратах этого типа можно достичь:
Трудности, возникающие при осуществлении метода:
Основной сложностью является определение площади теплообмена, которая должна обеспечить конденсацию парогазовой смеси при заданном расходе охлаждающей воды с заданной её температурой. Интенсивность конденсации парогазовых смесей обусловлена: изменением по высоте скорости парогазового потока и плотности орошения; диффузионными процессами на границе раздела пар – жидкость; влиянием поперечного потока вещества на гидродинамику плёнки; возможностью уноса жидкой фазы в поток пара и срыва плёнки парогазовым потоком – это сложные факторы, определяющие интенсивность тепломассоотдачи, и которые проявляются в зависимости от геометрических характеристик трубного пучка конденсатора.
Достоинства метода и установки:
Очистка сбросов в гидросферу с ЦБК.
Наиболее эффективным следует
считать включение в
Метод очистки сточных вод предприятия с помощью ультрафиолетового облучения.
Одним из эффективных методов является облучение воды бактерицидным ультрафиолетовым облучением. В его основе лежит обеззараживающая способность жёсткого ультрафиолетового облучения. Технология очистки такова: в закрытой ёмкости, в которой в обрабатываемую воду предварительно вводят отмытый, и измельчённый кремень включают, находящиеся под крышкой ёмкости источник ультрафиолетового излучения и источник облучения дневным светом. Производится выдержка, удаление биоосадка, отключение источников облучения. Очищенная таким способом вода удовлетворяет всем требования и нормативам по чистоте, вкусовым и цветовым качествам.
В качестве источника ультрафиолетового излучения используют лампу типа БУВ – 30. В качестве источника дневного света – гелий-неоновая лампа типа ЕВЗ ЛП – 2. Для контроля теплового режима используют встроенный термометр, а тепловой режим обеспечивается теплообменником. Размер фракций кремня 5…35 мм.
Данный способ наиболее эффективен для удаления органических веществ (в том числе фенолов и диоксинов), сульфатов и соединений хлора.
Его эффективность по этим и многим другим веществам равна 96 – 99 %.
Проблема утилизации
отходов целлюлозно-бумажной
Очень остро стоит в настоящее время проблема отходности целлюлозно-бумажных комбинатов. Многотонные отходы этих предприятий складируются, занимая большие площади и отрицательно воздействуя на окружающую среду.
Наиболее остро в настоящее время стоит проблема утилизации лигнина и шламов.
Основными методами борьбы с отходами являются их сжигание либо переработка с целью получения полезных продуктов. Факторами ограничивающими возможность термической утилизации отходов являются высокая загрязнённость, низкая температура плавления некоторых отходов, наличие крупногабаритных включений и значительных колебаний насыпной плотности сжигаемых отходов. К приемлемым технологиям сжигания относят колосниковое сжигание и сжигание в кипящем слое. Основным достоинством же термических методов является их относительно низкая стоимость. Переработка отходов бумажных фабрик эффективна сточки зрения экологии, но убыточна по экономическим показателям. С другой стороны из отходов отрасли можно получить много ценных и полезных продуктов. Разберём это на примере переработки и использования лигнина
Лигнин присутствует в многотоннажных древесных отходах.
Содержание компонентов в
Общая зола % |
Лигнин % |
Геми-целлюлоза |
Целлюлоза % | |
Мягкая древесина. |
0.4 |
27.8 |
24 |
41 |
Твёрдая древесина. |
0.3 |
19.5 |
35 |
39 |
Солома злаков. |
6.6 |
16.7 |
28.2 |
39.9 |
Физические характеристики лигнина.
Химический состав 100г сухого вещества лигнина.
Вещество. |
Вес, мг |
Нитратный азот |
5.4 |
Подвижный фосфор |
7 |
Калий |
167.5 |
Кальций |
106 |
Магний |
66 |
Цинк |
>4 |
Марганец |
1.8 |
Медь |
0.33 |
железо |
2.5 |
Кроме того, лигнин содержит редуцирующие вещества, полисахариды метоксильных, карбоксильных и фенольных групп, золы и кислоты. Лигнин содержит 78 – 97 % органического сырья.
Лигнин – аморфное, полифункциональное высокомолекулярное ароматическое соединение, состоящее из фенилпропановых структурных единиц, и не является веществом постоянного состава. Лигнин – конечный продукт растительного метаболизма.
В России на 15 заводах выпускающих сульфитную целлюлозу ежегодно получают 2.5 млн. т. органических веществ растворённых в сульфитном щёлоке. А основная часть лигнина в виде лигносульфоновых соединений переходит в сульфитный щёлок. Лигносульфониты образуют комплексы с ионами ряда металлов и, следовательно, их применяют для удаления из почвы элементов, препятствующих нормальному росту растений. Гидролизный лигнин – универсальный сорбент, увеличивающий воздухопроницаемость и пористость, улучшающий структуру и другие физико-химические свойства почв. Лигнин используют при выращивании съедобных грибов, используют в качестве сорбента азот-фиксирующих бактерий, а также используется в качестве компоста в сельском хозяйстве.
В утилизации лигнин используется в
составе органо-минеральных
Различные виды лигнинов в почве под воздействием почвенных бактерий постепенно превращаются в гумусовые вещества, которые способствуют плодородию почвы. Применяют также аммонизированный лигнин, где часть азота (25%) находится в виде сульфат аммония, а 75% азота химически связано с лигнином, поэтому он обладает пролонгированным характером действия. При внесении в почву он быстро не вымывается, а усваивается растениями постепенно, по мере разложения лигнина микроорганизмами до низкомолекулярных соединений. Почва обогащается микро- и макроэлементами. Активируются микробиологические процессы, за счёт чего повышается плодородие почвы.
Проблемы, связанные с переработкой макулатуры на целлюлозно-бумажных комбинатах.
Применение ресурсосберегающих технологий, каковыми являются и переработка отходов ЦБК и переработка макулатуры, кроме положительных моментов связанных с уменьшением потребления лесных ресурсов, имеет и свои отрицательные стороны. Прежде всего, это связано с включением новых технологических циклов на предприятии, применением необходимых по технологии вредных химических веществ, а также отходы появляющиеся в процессе переработки макулатуры.
Процесс переработки
макулатуры в бумагу включает в себя
следующие стадии обработки: роспуск,
очистка при высокой
Макулатуру распускают гидроразбавителем высокой концентрации с добавками химикатов Н2О2 - 1%, NaOH - 0.75%, NaSiO3 - 1.25%, ДТПА - 0.25%, жирные кислоты - 0.08%, также присутствуют NH и OH. Причём данные приведены для лучшей на данный момент технологии. При переработке на формовочных тканях и прессовых частях выпадает осадок полимерные компоненты («клейкие осадки»), но также много химикатов образуется при смывке типографской краски - 30% минеральных веществ (глина, тальк, диоксид титана); 20% канифоли, жирные кислоты и их производные; 20% полимерные материалы; 7% углеводородных масел; остальное - волокна и неидентифицированные материалы. В осадках обнаружено значительное количество мыл. Возникла проблема механических (накипь) и биологических (смолы и слизь) отложений на оборудовании и трубопроводах. В общем, отходы при переработке макулатуры составляют 16% (сухие вещества) из них 50% горючие вещества. Зола и отходы процесса смывки типографской краски содержат тяжёлые металлы. А при сжигании отходов переработки макулатуры выделяются хлорорганические вещества, также оказывающих неблагоприятное воздействие на окружающую среду.
Информация о работе Воздействие целлюлозно-бумажной промышленности на окружающую среду