Автор работы: Пользователь скрыл имя, 25 Марта 2014 в 21:15, курсовая работа
Суттєвою рисою ландшафтної екології є центрованість на проблему взаємодії людини з природними системами. Значна частина ландшафтних екологів взагалі вважають свою науку як основу регламентації раціональної з екологічного погляду поведінки людини в ландшафті. Центральні проблеми ландшафтної екології (стійкість геосистем, прогнозування, нормування антропогенних навантажень тощо) мають безпосередню прикладну спрямованість.
В даній курсовій роботі була розглянута оцінка ступеня захищеності атмосферних опадів та прогноз впливу забруднених атмосферних опадів на якість ґрунтових вод, забруднення підземних вод в результаті зміни ландшафтів.
ВСТУП
1. Прогноз впливу забруднених атмосферних опадів на склад грунтових вод
1.1 Умови впливу забруднених атмосферних опадів на склад ґрунтових вод
1.2 Принципи розрахунку зміни складу ґрунтових вод під впливом забруднюючих речовин у атмосферних опадах
1.2.1 Розрахунок зміни складу ґрунтових вод під впливом забруднюючих речовин у атмосферних опадах
2. Оцінка ступеня захищеності грунтових вод від антропогенного забруднення
2.1 Кількісна оцінка захищеності ґрунтових вод
2.1.1 Розрахунок кількісної оцінки захищеності грунтових вод
2.2 Якісна оцінка захищеності ґрунтових вод
2.2.1 Розрахунок якісної оцінки захищеності ґрунтових вод
3. Забруднення підземних вод в результаті зміни ландшафтів
3.1 Регламентація місткості забруднюючих речовин у промислових накопичувачах
3.1.1 Розрахунок місткості забруднюючих речовин у промислових накопичувачах
ВИСНОВКИ
РЕКОМЕНДАЦІЇ
ПЕРЕЛІК ПОСИЛАНЬ
Рисунок 1.2 - Діаграма змінени концентрації ЗР у ГВ під впливом забруднених атмосферних опадів
Отримані данні можна представити у вигляді
діаграми (рисунок 1.2).
Результати розрахунків, що подані у таблицях, дозволяють зробити деякі висновки щодо впливу забруднених опадів на якість ГВ. При значенні m=0,5 вже на сьомий рік після випадення забруднених опадів концентрація ЗР у ГВ і атмосферних опадах майже не змінилося, тобто ГВ перенасичені ЗР, що інфільтруються разом з атмосферними опадами за порівняно невеликий відрізок часу. Зі зменшенням частки забруднених атмосферних опадів, що інфільтруються (m=0,05), концентрація ЗР у ГВ через сім років досягне лише 0,663 мг/л, а при ще меншій частці забруднених атмосферних опадів, що інфільтруються (m=0,005), концентрація ЗР у ГВ через сім років досягне всього 0,443 мг/л.
Якщо принесення тієї або іншої ЗР у ГВ обумовлене атмосферними опадами, то концентрація цієї речовини у ГВ буде наближатися до концентрації в атмосферних опадах. Тому під впливом забруднених атмосферних опадів при їх постійному випаданні у ГВ накопичуються невластиві їм речовини (СПАР, отрутохімікати, феноли та інше).
2. ОЦІНКА СТУПЕНЯ ЗАХИЩЕНОСТІ
ГРУНТОВИХ ВОД ВІД
При різних видах антропогенної діяльності відбувається забруднення вод зони аерації (води родючого ґрунту й верховодка) та підгрунтових вод (ґрунтових вод – ГВ). У зв’язку з цим при проектуванні різних інженерних споруд виникає необхідність прогнозування їх можливого впливу на природний стан ГВ, що багато у чому визначається ступенем їх ізольованості від даної поверхні.
2.1 Кількісна оцінка захищеності ґрунтових вод
В основу кількісної оцінки захищеності
ГВ від забруднення фільтратом покладене
визначення часу(t), за який забруднена
вода, що фільтрується з поверхні землі
(днища полігону), досягає рівня ГВ. Наближена
оцінка величини t може бути виконана за
відомою формулою Цункера, яку у спрощеному
вигляді для умов однорідного розрізу
записують у такому вигляді:
t= (sH/Kф) [m/H-ln (1+m/H)], (2.1)
де Н – висота стовпа забруднених (стічних)
вод у межах полігону, м,
Кф – коефіцієнт фільтрації порід зони аерації, м/добу;
m – потужність порід зони аерації, м;
S – нестача насичення порід зони аерації (s=n-nе, де n – пористість, nе – початкова вологість порід зони аерації; оскільки nе звичайно не відома, то при розрахунку замість неї можна використати значення n,тобто формулу (2.1) можна записати у вигляді:
t= (nH/Kф) [m/H-ln (l+m/H)]. (2.2)
Розрахунки за формулами (2.1) та (2.2) показують, що час проникнення стоків до ґрунтових вод істотно залежить від значення Кф, але в цілому цей час невеликий. Так, при Кф більше 0,5 м/добу час руху стоків не перевищує декількох діб навіть при відносно великій потужності зони аерації (m>10 м); при Кф менше 0,5 м/добу час фільтрації збільшується до декількох діб; при Кф менше 0,01 м/добу і m більше 20 м – час фільтрації досягає перших сотень діб.
При двошаровій будові зони аерації з малопроникним верхнім шаром (водоупором) час фільтрації стоків (фільтрату) до рівня ГВ складається із часу руху у верхньому (t1) та нижньому шарах (t2). Час t1 визначається за формулами (2.1) та (2.2) підстановкою в них параметрів К1, m1 для верхнього шару, а час t2 визначається за формулою (2.3):
t = n2H/Kф2 [m2/H – [1 – m1/H (Kф2/Kф1 – 1)] ln (1+m2/H+m1)], (2.3)
де n2, m2, K2 – відповідно пористість, потужність і коефіцієнт фільтрації нижнього, відносно добре проникного шару.
Аналіз показав, що при К1/К2 менше за 0,1 часу стоків у двошаровому розрізі, в основному визначається часом руху через верхній, слабкопроникний шар. У випадку неоднорідності будови відкладень зони аерації можливий другий наближений підхід: приведення неоднорідного розрізу до однорідного з середнім коефіцієнтом фільтрації, запропонованим Бочетвером:
Кср= m/(m1/Kф1+m2/Kф2+…+m1/Kф2), (2.4)
де m1, m2, …mi – потужності окремих шарів, м;
Кф1, Кф2,..., Кфі – коефіцієнти фільтрації цих же шарів, м/добу;
m – потужність зони аерації, м.
При фільтрації з поверхні землі стічних вод, що скидаються з постійною витратою Q у приймач площею F, можуть бути два випадки. Якщо q<Kф, де Кф – коефіцієнт фільтрації порід зони аерації у випадку однорідного розрізу, q = Q/F, то стічні води, які потрапляють на поверхню землі повністю підуть на інфільтрацію, не утворивши на поверхні стовпа води (Н=0). В такому випадку час досягнення стічними водами рівня ГВ може бути визначений за формулою:
t = , (2.5)
Якщо ж q>Kф, то на поверхні землі утворюється
стовп стічних вод, що змінюється у часі
Н=f(t), і час фільтрації до рівня ГВ може
бути визначений за формулою:
t = , (2.6)
Якщо розріз неоднорідний і складається із декількох шарів з різними фільтраційними властивостями, то час фільтрації можна оцінити таким чином. Якщо Кф кожного шару більший q, то неоднорідний розріз приводиться до однорідного за допомогою формули (2.4) й розрахунок величин t виконується за формулою (2.5) при підстановці в неї замість Кф значення Кф(ср) Так саме чинять, якщо Кф кожного шару менший q, але тільки у цьому випадку величину t розраховують за формулою (2.6). Нарешті, якщо для одних шарів Кф>q, але для інших Кф<q, то величина t визначається для кожного шару: для шарів з Кф>q за формулою (3.5), а для шарів з Кф<q за формулою (2.6), але одержані значення підсумовуються.
Для розрахунку часу фільтрації за формулами (2.5), і (2.6) як розрахункове значення q приймається 0,03 м/добу. За даними скид стічних вод складає: на комунальні поля зрошення 10-30, на землеробські поля зрошення не більше 5-20 і на поля фільтрації 100-300 м3/(га.доб.). У відповідності з цими даними, приймаючи Q=300 м3/доб, F=1 га =10 000 м2, маємо q=0,03 м/доб.
За часом досягнення рівня ГВ виділяються такі категорії захищеності ґрунтових вод:
І-t<10, ІІ-t=10-50; ІІІ-t=50-100; ІV-t=100-200; V-t=200-400 й VІ-t>400 діб. Чим вища категорія, тим краще природна захищеність ГВ від техногенного забруднення.
2.1.1 Розрахунок кількісної оцінки захищеності ҐВ
Варіант 1
Джерелом забруднення є накопичувач рідких відходів металургійного підприємства. Висота стовпа промислових стоків у накопичувачі (H) складає 1,8 м. Породи зони аерації мають наступні усереднені характеристики: потужність m=1 м, пористість n=15 %, Кф=0,012 м/добу. Дати кількісну оцінку часу фільтрації з накопичувача рідких відходів металургійного підприємства.
Для кількісної оцінки часу фільтрації з накопичувача рідких відходів може бути використана формула (2.2):
t=(n·H/Kф) [m/H-ln(1+m/H)],
(0,15*1,8/0,012)[1/1,8-ln*(1+
Таке значення t відповідає низькому рівню (І категорії) захищеності ҐВ, що дозволяє припускати високий негативний вплив СВ, накопичених в приймачі рідких відходів.
Варіант 2
Джерелом забруднення є накопичувач рідких відходів металургійного підприємства. СВ скидаються на поверхню землі та практично повністю витрачаються на інфільтрацію, не утворюючи стовпа рідини. Породи зони аерації мають наступні усереднені характеристики: потужність m=1 м, пористість n=15 %, Кф=0,012 м/добу. Дати кількісну оцінку часу фільтрації накопичувача рідких відходів металургійного підприємства.
В цьому випадку розрахунок часу досягнення рівня ҐВ визначається формулою (2.5):
,
Таке значення t відповідає дуже низькому рівню (І категорії) захищеності ҐВ, що дозволяє припускати величезний негативний вплив СВ, накопичених в приймачі рідких відходів.
2.2 Якісна оцінка захищеності
ґрунтових вод
Якісна оцінка природних ґрунтових вод
дається за такими показниками.
глибина залягання ґрунтових або потужність зони аерації;
будова й літологічні особливості порід зони аерації;
потужності слабкопроникнених порід у розрізі зони аерації;
фільтраційні властивості порід зони аерації і перш за все слабопроникнених різностей.
Найменше захищеними є ґрунтові води в умовах , коли зона аерації представлена добре проникне ними відкладеннями і у їх розрізі відсутні слабкопроникнені літологічні різності. Збільшення глибини залягання ГВ хоча й покращує їх захищеність, але вплив цього фактору менше істотний, ніж наявність водоупорних порід у розрізі зони аерації.
Якісна оцінка природної захищеності ґрунтових вод може бути виконана на основі визначення категорій захищеності ґрунтових вод I, II, III, IV, V, VI у балах. Більш високим категоріям відповідає більша сума балів – сумарний показник захищеності ґрунтових вод.
Як вихідна оцінка для оцінки балів прийняте визначення за формулою (2.2) часу фільтрації її крізь зону аерації, складену з добре проникнених порід (Кф=2 м/добу) потужністю 10 м. Час фільтрації t1 крізь зону аерації потужністю 20 м, яка складена такими породами, приблизно вдвоє більший (t2=2t1); крізь зону аерації потужністю 20 м утроє більший (t3=3ti) тощо.
Звичайно зона аерації (глибина залягання ГВ) коливається від 3 до 30 м, рідко перевищуючі 40 – 50 м. Тому виділяються 5 градацій глибин залягання: до 10, 10 – 20, 20-30, 30-40, більш 40 м. Першій градації з мінімальною (до 10 м) глибиною залягання рівня ґрунтових вод, час фільтрації для якої дорівнює t1, відповідає 1 бал ; другий – 2 бали, третій – 3 бали , четвертій – 4 бали, п’ятій (більш ніж 40 м) – 5 балів (таблиця 2.1).
Таблиця 2.1 – Градації глибин залягання рівней ґрунтових вод та кількість балів, яка їм відповідає
Номер градації |
1 |
2 |
3 |
4 |
5 |
Глибина ,м |
<10 |
10-20 |
20-30 |
30-40 |
>40 |
Потужність слабопроникнених порід зони аерації поділяється на 11 градацій (до 2, 2-4, 4-6 ... понад 20 м) а серед них за літологічними та фільтраційними особливостями виділяються 3 групи: а – супіски , легкі суглинки з Кф= 0.1- 0.01 м/ добу; - важкі суглинки й глини з Кф менш 0.001м/ добу; в – проміжна між а та с – суміш порід з значеннями Кф=0.01-0.001 м/ добу (таблиця 2.2).
Таблиця 2.2 – Градації потужностей слабопроникних
порід зони аерації та кількість балів,яка
їм відповідає
Номер градації |
Потужність відкладень , м |
Група відкладень | ||
a |
в |
c | ||
1 |
<2 |
1 |
1 |
2 |
2 |
2-4 |
2 |
3 |
4 |
3 |
4-6 |
3 |
4 |
6 |
4 |
6-8 |
4 |
6 |
8 |
5 |
8-10 |
5 |
7 |
10 |
6 |
10-12 |
6 |
9 |
12 |
7 |
12-14 |
7 |
10 |
14 |
8 |
14-16 |
8 |
12 |
16 |
9 |
16-18 |
9 |
13 |
18 |
10 |
18-20 |
10 |
15 |
20 |
11 |
>20 |
12 |
18 |
25 |
Примітка: а – супіски, легкі суглинки, с – важкі суглинки, глини; в – суміш порід груп а та с.
Сума балів, що залежить градації глибин, залягання ґрунтових вод, потужності слабопроникнених порід та їх літології, визначають захищеностю ГВ, яку виражено показником захищеності (ПЗ). За значенням ПЗ виділяється 6 категорій захищеності ґрунтових вод (таблиця 2.3).
Таблиця 2.3 – Категорії захищеності ґрунтових
вод ( за ПЗ )
Категорії захищеності |
I |
II |
III |
IV |
V |
VI |
Показник захищеності (за ПЗ) |
<5 |
5-10 |
10-15 |
15-20 |
20-25 |
>25 |
2.2.1 Розрахунок якісної оцінки
захищеності ґрунтових вод
В межах ділянки зона аерації представлена піском мілкозернистим (середня потужність 7,5 м), супісками (середня потужність 12 м) та легкими суглинками (середня потужність 15 м), а водоносний горизонт (середньої потужності 16,5 м) складений середньозернистими пісками. Мінімальна глибина залягання ҐВ визначається для грудня-лютого (час випадення мінімальної кількості опадів) і складає у середньому 12,75 м.
Таблиця 2.3 – Вихідні дані для завдання
№ п.ч. |
Літологічний склад зони аерації |
Потужність, м |
Коефіцієнт фільтрації, м/добу |
Пористість, в частках од. |
1 |
Пісок мілкозернистий |
0-2 |
0,009 |
0,25 |
2 |
Супісок |
2-4 |
0,12 |
0,35 |
3 |
Суглинок легкий |
4-8 |
0,005 |
0,28 |
4 |
Пісок мілкозернистий |
8-12 |
1,11 |
0,40 |
5 |
Суглинок легкий |
12-14 |
0,006 |
0,25 |
6 |
Супісок |
14-16 |
0,20 |
0,40 |
7 |
Пісок середньозернистий |
16-17 |
2,5 |
0,47 |
Згідно з таблицею 2.1 глибина залягання
ҐВ відповідає другій градації (10-20 м),
тобто відповідає 2 балам. За літологічними
особливостями зони аерації (група а –
таблиця 2.2) набирає ще 9 балів. Отже, сума
складає 11 балів, що відповідає значенню
ПЗ, відповідному III категорії. Така природна
захищеність близька до помірної, вона
дозволяє припускати можливість незначного
техногенного впливу на ҐВ, що залягають
в умовах досліджуваної ділянки.
3. ЗАБРУДНЕННЯ ПІДЗЕМНИХ ВОД В РЕЗУЛЬТАТІ ЗМІНИ ЛАНДШАФТІВ
1.Забруднення підземних вод в результаті антропогенної зміни ландшафтів. Накопичувачі рідких відходів.
2.Стадії забруднення підземних вод.
3.Потужність шарів водоносних обріїв – фактор, що регламентує місткість забруднюючих речовин у промислових накопичувачах відходів.
Информация о работе Забруднення підземних вод в результаті зміни ландшафтів