Метеориты

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 13:59, доклад

Описание работы

Метеори́т — тело космического происхождения, упавшее на поверхность крупного небесного объекта.
Большинство найденных метеоритов имеют вес от нескольких граммов до нескольких килограммов. Крупнейший из найденных метеоритов — Гоба (вес которого, по подсчетам, составлял около 60 тонн)[1]. Полагают, что в сутки на Землю падает 5—6 тонн метеоритов, или 2 тысячи тонн в год[2].

Содержание работы

1 Терминология
2 Процесс падения метеорных тел на Землю
3 Классификация метеоритов
3.1 Классификация по составу
3.2 Классификация по методу обнаружения
4 Следы внеземной органики в метеоритах
4.1 Углистый комплекс
4.2 «Организованные элементы»
5 Крупные современные метеориты, обнаруженные на территории России
6 Отдельные метеориты
7 Интересные факты
8 См. также
9 Примечания
10 Ссылки

Файлы: 1 файл

метеор.docx

— 37.69 Кб (Скачать файл)

Метеори́т — тело космического происхождения, упавшее на поверхность крупного небесного объекта.

Большинство найденных метеоритов имеют вес от нескольких граммов до нескольких килограммов. Крупнейший из найденных метеоритов — Гоба (вес которого, по подсчетам, составлял около 60 тонн)[1]. Полагают, что в сутки на Землю падает 5—6 тонн метеоритов, или 2 тысячи тонн в год[2].

Существование метеоритов не признавалось[3] ведущими академиками XVIII века, а гипотезы внеземного происхождения считались лженаучными. Утверждается, что Парижская академия наук в 1790 г. приняла решение не рассматривать впредь сообщений о падении камней на Землю как о явлении невозможном. Во многих музеях метеориты (в терминологии того времени — аэролиты) изъяли из коллекций, чтобы «не сделать музеи посмешищем»[2][4].

Изучением метеоритов занимались академики В. И. Вернадский, А. Е. Ферсман, известные энтузиасты исследования метеоритов П. Л. Драверт, Л. А. Кулик и многие другие. В Российской академии наук сейчас есть специальный комитет, который руководит сбором, изучением и хранением метеоритов. При комитете есть большая метеоритная коллекция.

Содержание

  • 1 Терминология
  • 2 Процесс падения метеорных тел на Землю
  • 3 Классификация метеоритов
    • 3.1 Классификация по составу
    • 3.2 Классификация по методу обнаружения
  • 4 Следы внеземной органики в метеоритах
    • 4.1 Углистый комплекс
    • 4.2 «Организованные элементы»
  • 5 Крупные современные метеориты, обнаруженные на территории России
  • 6 Отдельные метеориты
  • 7 Интересные факты
  • 8 См. также
  • 9 Примечания
  • 10 Ссылки

Терминология

Иллюстрация фаз полета от входа в атмосферу до падения: Метеороид − Метеор (Болид) − Метеорит

Космическое тело размером до нескольких метров, летящее по орбите и попадающее в атмосферу Земли, называется метеорным телом, или метеороидом. Более крупные тела называются астероидами.

Явления, порождаемые при  прохождении метеорными телами через  атмосферу Земли, носят названия метеоров; особо яркие метеоры называют болидами.

Твёрдое тело космического происхождения, упавшее на поверхность Земли, называется метеоритом.

На месте падения крупного метеорита может образоваться кратер (астроблема). Один из самых известных кратеров в мире — Аризонский. Предполагается, что наибольший метеоритный кратер на Земле — Кратер Земли Уилкса (диаметр около 500 км).

Другие названия метеоритов: аэролиты, сидеролиты, уранолиты, метеоролиты, бэтилиямы (baituloi), небесные, воздушные, атмосферные или метеорные камни  и т. д.

Аналогичные падению метеорита  явления на других планетах и небесных телах обычно называются просто столкновениями между небесными телами.

Процесс падения  метеорных тел на Землю

Метеорное тело входит в  атмосферу Земли на скорости от 11 до 72 км/с.[источник не указан 762 дня] На такой скорости начинается его разогрев и свечение. За счёт абляции (обгорания и сдувания набегающим потоком частиц вещества метеорного тела) масса тела, долетевшего до поверхности, может быть меньше, а в некоторых случаях значительно меньше его массы на входе в атмосферу. Например, небольшое тело, вошедшее в атмосферу Земли на скорости 25 км/с и более, сгорает почти без остатка[источник?]. При такой скорости вхождения в атмосферу из десятков и сотен тонн начальной массы до поверхности долетает всего несколько килограммов или даже граммов вещества[источник?]. Следы сгорания метеорного тела в атмосфере можно найти на протяжении почти всей траектории его падения.

Внешние изображения

Потеря  горизонтальной составляющей скорости


Если метеорное тело не сгорело в атмосфере, то по мере торможения оно теряет горизонтальную составляющую скорости. Это приводит к изменению  траектории падения от часто почти  горизонтальной в начале до практически  вертикальной в конце. По мере торможения, свечение метеорного тела падает, оно  остывает (часто свидетельствуют, что  метеорит при падении был тёплый, а не горячий).

Кроме того, может произойти  разрушение метеорного тела на фрагменты, что приводит к выпадению метеоритного дождя. Разрушение некоторых тел носит катастрофический характер, сопровождаясь мощными взрывами, и нередко не остаётся макроскопических следов метеоритного вещества на земной поверхности, как это было в случае с Тунгусским болидом. Предполагается, что такие метеориты могут представлять собой отмершие кометы.

При соприкосновении метеорита  с земной поверхностью на больших  скоростях (порядка 2000-4000 м/с) происходит выделение большого количества энергии, в результате метеорит и часть  горных пород в месте удара  испаряются, что сопровождается мощными  взрывными процессами, формирующими крупный округлый кратер, намного  превышающий размеры метеорита, а большой объём горных пород  испытывает импактный метаморфизм. Хрестоматийным примером этому служит Аризонский кратер.

При небольших скоростях (порядка сотен м/с) столь значительного  выделения энергии не наблюдается, диаметр образующегося ударного кратера сравним с размерами  самого метеорита, и даже крупные метеориты могут хорошо сохраниться, как например метеорит Гоба[5].

Классификация метеоритов

Основная статья: Классификация метеоритов

Классификация по составу

  • каменные
    • хондриты
      • углистые хондриты
      • обыкновенные хондриты
      • энстатитовые хондриты
    • ахондриты
  • железо-каменные
    • палласиты
    • мезосидериты
  • железные

Наиболее часто встречаются  каменные метеориты (92,8 % падений). Они состоят в основном из силикатов: оливинов (Fe, Mg)2[SiO4] (от фаялита Fe2[SiO4] до форстерита Mg2[SiO4]) и пироксенов (Fe, Mg)2Si2O6 (от ферросилита Fe2Si2O6 до энстатита Mg2Si2O6).

Подавляющее большинство  каменных метеоритов (92,3 % каменных, 85,7 % общего числа падений) — хондриты. Хондритами они называются, поскольку содержат хондры — сферические или эллиптические образования преимущественно силикатного состава. Большинство хондр имеет размер не более 1 мм в диаметре, но некоторые могут достигать и нескольких миллиметров. Хондры находятся в обломочной или мелкокристаллической матрице, причём нередко матрица отличается от хондр не столько по составу, сколько по кристаллическому строению. Состав хондритов практически полностью повторяет химический состав Солнца, за исключением лёгких газов, таких как водород и гелий. Поэтому считается, что хондриты образовались непосредственно из протопланетного облака, окружающего Солнце, путём конденсации вещества и аккреции пыли с промежуточным нагреванием.

Ахондриты составляют 7,3 % каменных метеоритов. Это обломки протопланетных (и планетных?) тел, прошедшие плавление и дифференциацию по составу (на металлы и силикаты).

Железные метеориты состоят  из железо-никелевого сплава. Они составляют 5,7 % падений.

Железо-силикатные метеориты  имеют промежуточный состав между  каменными и железными метеоритами. Они сравнительно редки (1,5 % падений).

Ахондриты, железные и железо-силикатные метеориты относят к дифференцированным метеоритам. Они предположительно состоят  из вещества, прошедшего дифференцировку  в составе астероидов или других планетных тел. Раньше считалось, что  все дифференцированные метеориты  образовались в результате разрыва  одного или нескольких крупных тел, например планеты Фаэтона. Однако анализ состава разных метеоритов показал, что с большей вероятностью они образовались из обломков многих крупных астероидов.

Ранее выделяли ещё тектиты, куски кремнистого стекла ударного происхождения. Но позже оказалось, что тектиты образуются при ударе метеорита о горную породу, богатую кремнеземом[6].

Классификация по методу обнаружения

  • падения (когда метеорит находят после наблюдения его падения в атмосфере);
  • находки (когда метеоритное происхождение материала определяется только путём анализа);

Следы внеземной  органики в метеоритах

Углистый комплекс

Углеродосодержащие (углистые) метеориты имеют одну важную особенность — наличие тонкой стекловидной коры, образовавшейся, по-видимому, под воздействием высоких температур. Эта кора является хорошим теплоизолятором, благодаря чему внутри углистых метеоритов сохраняются минералы, не выносящие сильного нагрева — например, гипс. Таким образом стало возможным при исследовании химической природы подобных метеоритов обнаружить в их составе вещества, которые в современных[7] земных условиях являются органическими соединениями, имеющими биогенную природу[8] :

  • Насыщенные углеводороды
      • Изопреноиды
      • н-Алканы
      • Циклоалканы
  • Ароматические углеводороды
      • Нафталин
      • Алкибензолы
      • Аценафтены
      • Пирены
  • Карбоновые кислоты
      • Жирные кислоты
      • Бензолкарбоновые кислоты
      • Оксибензойные кислоты
  • Азотистые соединения
      • Пиримидины
      • Пурины
      • Гуанилмочевина
      • Триазины
      • Порфирины

Наличие подобных веществ  не позволяет однозначно заявить  о существовании жизни вне  Земли, так как теоретически при  соблюдении некоторых условий они  могли быть синтезированы и абиогенно.

С другой стороны, если обнаруженные в метеоритах вещества и не являются продуктами жизни, то они могут быть продуктами преджизни — подобной той, какая существовала некогда на Земле.

«Организованные элементы»

При исследовании каменных метеоритов обнаруживаются так называемые «организованные элементы» — микроскопические (5-50 мкм) «одноклеточные» образования, часто имеющие явно выраженные двойные стенки, поры, шипы и т. д.[8]

На сегодняшний день не является неоспоримым фактом, что  эти окаменелости принадлежат останкам каких-либо форм внеземной жизни. Но, с другой стороны, эти образования имеют такую высокую степень организации, которую принято связывать с жизнью[8].

Кроме того, такие формы  не обнаружены на Земле.

Особенностью «организованных  элементов» является также их многочисленность: на 1г. вещества углистого метеорита  приходится примерно 1800 «организованных  элементов».

Крупные современные  метеориты, обнаруженные на территории России

  • Тунгусский феномен (на данный момент неясно именно метеоритное происхождение тунгусского феномена. Подробно см. в статье Тунгусский метеорит). Упал 30 июня 1908 года в бассейне реки Подкаменная Тунгуска в Сибири. Общая энергия оценивается в 40-50 мегатонн в тротиловом эквиваленте.
  • Метеорит Царёв (метеоритный дождь). Упал предположительно 6 декабря 1922 г. вблизи села Царёв Волгоградской области. Каменный метеорит. Многочисленные осколки собраны на площади около 15 кв. км. Их общая масса 1,6 тонны. Самый крупный фрагмент весит 284 кг.
  • Сихотэ-Алинский метеорит (общая масса осколков 30 тонн, энергия оценивается в 20 килотонн). Железный метеорит. Упал в Уссурийской тайге 12 февраля 1947 г.
  • Витимский болид. Упал в районе посёлков Мама и Витимский Мамско-Чуйского района Иркутской области в ночь с 24 на 25 сентября 2002 года. Событие имело большой общественный резонанс, хотя общая энергия взрыва метеорита, по-видимому, сравнительно невелика (200 тонн тротилового эквивалента, при начальной энергии 2,3 килотонны), максимальная начальная масса (до сгорания в атмосфере) 160 тонн, а конечная масса осколков порядка нескольких сотен килограммов.
  • Челябинский метеорит. Падение метеорита вблизи города с крупными промышленными объектами произошло 15 февраля 2013 года в России, под Челябинском. Свидетелями падения метеорита стали тысячи жителей Костанайской области Казахстана, Тюменской, Курганской, Свердловской и Челябинской областей.[9], при этом вследствие распространения ударной волны, образовавшейся при прохождении метеоритом плотных слоёв атмосферы со сверхзвуковой скоростью, в Челябинске около тысячи жителей были ранены осколками разбитых стёкол (двое — тяжело), пострадало около 3 тыс. зданий: жилых домов, учебных заведений, больниц, поликлиник, предприятий и др.[10].

Информация о работе Метеориты