Автор работы: Пользователь скрыл имя, 20 Октября 2013 в 21:12, лабораторная работа
Цель работы:
- повторение законов всемирного тяготения Ньютона и движения планет Кеплера
- знакомство с методами компьютерного моделирования динамики двумерного движения
- визуализация движения космических тел
Цель работы:
- повторение законов всемирного тяготения Ньютона и движения планет Кеплера
- знакомство с методами
- визуализация движения
Между любыми двумя материальными
точками действуют силы
где - сила тяготения, действующая на точку с массой , - радиус-вектор, проведенный из этой точки в точку, обладающую массой , - расстояние между точками. Коэффициент G называется постоянной всемирного тяготения, численно равный
Из рис. 7.1 видно, что вектор можно представить как разность радиус-векторов точек и , то есть , поэтому для компьютерного моделирования удобнее пользоваться следующей формулой закона всемирного тяготения:
По третьему закону Ньютона сила , действующая на материальную точку с массой , численно равна силе , но направлена в противоположную сторону
Приведенные формулы справедливы не только для материальных точек, но и для двух твердых тел шарообразной формы. В этом случае - радиус-вектор, соединяющий центры первого и второго тел, а . Формула (7.1) выполняется также в том случае, когда одно из тел имеет произвольную форму, но его размеры во много раз меньше радиуса второго тела.
Потенциальная энергия
Если , то вторая частица практически не подвижна, располагается в центре масс системы, а первая частица движется в центрально-симметричном поле, в котором выполняются законы сохранения энергии и момента импульса. Траектория частицы определяется величиной эксцентриситета, который определяется по формуле
где E и L - полная энергия и импульс материальной точки соответственно.
Компьютерное моделирование движения частиц, движущихся в плоскости, производится аналогично, как и рассмотренные ранее случаи одномерного движения, но при этом необходимо учесть следующие особенности:
Пример. Вычислить траектории движения двойной звезды, состоящей из двух звезд с массами и (рис.7.2). В начальный момент времени расстояние между ними равно . Скорость первой звезды и направлена под углом к отрезку, соединяющему звезды в начальный момент времени. Вычисления произвести в системе, связанной с центром масс двойной звезды (ц-системе), а также в системе, относительно которой центр масс движется горизонтально со скоростью (л-системе).
Решение. На рис. 7.3 приведен фрагмент листинга программы для ввода данных и начальных условий задачи.
Рис. 7.3
Первая строка рис. 7.3 соответствует данным из условия задачи. В системе отсчета, связанной с центром масс (ц-системе), общий импульс равен нулю, отсюда можно найти начальную скорость второй звезды. Полученная формула приведена во второй строке. Во второй строке также введен малый промежуток времени dt и опция, показывающая, что нумерация матриц начинается с единицы. В третьей строке рис. 7.3 введены радиус-векторы и векторы скоростей рассматриваемых частиц в начальный момент времени в ц-системе.
Для решения задачи в л-системе, согласно принципу относительности Галилея, нужно изменить начальные скорости (рис. 7.4).
Рис. 7.4
Процедура решения задачи по методу Эйлера приведена на рис. 7.5. Выходным параметром процедуры является матрица, состоящая из четырех столбцов, в которых располагаются декартовы координаты (компоненты радиус-векторов) звезд в различные моменты времени.
Рис. 7.5
Для построения графиков из матриц выделим соответствующие колонки
Рис. 7.6
Траектории звезд, вычисленные в ц-системе, представлены на рисунке 7.7, в л-системе - на рис 7.8.
Вопросы для допуска
Порядок выполнения работы
Задание 1. Приближение к Луне
Ракета массой m подлетает к Луне (рис. 7.9 - 7.14). Когда расстояние до Луны становится равным а, а прицельное расстояние p0, то скорость объекта . Рассчитать траекторию полёта ракеты вблизи Луны. Масса Луны равна 7,3·1022 кг, радиус Луны – 1,7·103 км. Изобразить траектории ракеты при . При расчётах принять, что малым является промежуток времени ∆t = 20 сек. Данные для расчета взять из таблицы 7.1. Для каждого значения начальной скорости вычислить значения энергии, момента импульса и эксцентриситета. Провести исследование, как зависит вид траектории от значений энергии и эксцентриситета. Результаты занести в таблицу 7.2.
Таблица 7.1
Номер варианта |
Номер рисунка |
m, т |
|
|
,км/с |
,км/с |
,км/с |
1 |
7.9 |
10 |
10 |
7 |
0,4 |
0,6 |
1 |
Таблица 7.2
Скорость |
Энергия |
Момент импульса |
Эксцентриситет |
Траектория |
0.4 |
-4.069E+9 |
2.8E+13 |
0.855 |
эллипс |
0.6 |
-3.069E+9 |
4.2E+13 |
0.737 |
эллипс |
1 |
1.309E+8 |
7E+13 |
1.027 |
эллипс |
Задание 2. Посадка спутника в атмосфере
Ракета массой m приближается из космоса к планете массой M и радиусом R с начальной скоростью (рис. 7.9 - 7.14). Начальное положение характеризуется параметрами а и p0. На планете существует атмосфера, толщина которой H. Сила сопротивления в атмосфере характеризуется по модулю силой и направлена в сторону, противоположную движению, где h – расстояние до поверхности. Найти координаты приземления ракеты без учёта сопротивления (x1, y1) и с учётом сопротивления (x2, y2). Вычислить расстояние – погрешность расчёта, если не учитывать трение. При расчётах принять, что малым является промежуток времени ∆t = 10 сек. Данные для расчета взять из таблицы 7.3.
Таблица 7.3
Номер варианта |
Номер рисунка |
M, |
R, м |
m, т |
V0, км/с |
|
|
A, кг/с |
H, км |
k |
1 |
7.14 |
1 |
2 |
10 |
1 |
25 |
10 |
5 |
1000 |
1 |
X1 =_______________. Y1 =_________________
X2 =_______________. Y2 =________________
=_________________
Задание 3. Построение траектории Луны
Построить траектории Земли и Луны в гелиоцентрической системе координат с использованием компьютерного моделирования. Начальную конфигурацию системы «Солнце (S) - Земля (Z) - Луна (L)» принять изображенной на рис. 7. 14. Время моделирования - 30 суток, малым является промежуток времени - 1 мин.
При расчетах принять
Масса Солнца кг
Масса Земли кг
Масса Луны кг
Среднее расстояние от Солнца до Земли м
Среднее расстояние от Земли до Луны м
Период обращения Земли вокруг Солнца суток
Период обращения Луны вокруг Земли суток
Вопросы для сдачи работы
Информация о работе Моделирование траекторий космических тел