Процесс эволюции звезд

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 16:35, контрольная работа

Описание работы

В середине 20-го века казалось, что мы понимаем строение Вселенной: множество Галактик, состоящих из звёзд, с планетными системами вокруг некоторых из них, и всем этим правит сила всемирного тяготения, или гравитация. Даже считавшиеся редкими двойные звёзды, планеты, газовые и пылевые облака должны подчиняться этой великой силе. Но, изучая распределение и движение звёзд в окрестностях Солнечной системы и во всей Галактике, учёные открывали один неожиданный факт за другим.
В Солнечной системе действует правило: чем ближе планета к Солнцу, тем быстрее она вращается вокруг него. То же самое правило должно действовать в Галактике: звёзды близкие к центру Галактики должны вращаться вокруг него гораздо быстрее звёзд, находящихся на периферии.

Содержание работы

Введение

Содержание:

2.1. Краткая история изучения звёзд.
2.2. Эволюция взглядов о рождении звезд.
2.3. Происхождение и эволюция звезд.
2.4. Из чего образуются звёзды?
2.5. Жизнь черного облака
2.6. Облако становится звездой
2.7. Как устроена звезда и как она живет.
2.8. конец жизненного пути звезды.

Заключение.

IV. Список использованной литературы.

Файлы: 1 файл

ксе.docx

— 55.79 Кб (Скачать файл)

 

Сначала "выгорает" дейтерий, а затем литий, бериллий и бор. Сжатие в результате выделения  дополнительной энергии замедляется, но не прекращается совсем, так как эти элементы быстро оказываются израсходованными. Когда температура повышается еще больше, начинают действовать протонные реакции или углеродно-азотный цикл. Эти реакции могут поддерживаться длительное время, сжатие прекращается и протозвезда превращается в обычную звезду главной последовательности. Давление внутри звезды уравновешивает притяжение, и она оказывается в устойчивом состоянии.

 

Время гравитационного  сжатия звезд сравнительно невелико. Оно зависит от массы протозвезды. Чем больше масса, тем быстрее  протекает процесс гравитационной конденсации. Протозвезды, имеющие такую же массу, как Солнце, сжимаются за 108 лет. Так как сжатие происходит быстро, наблюдать звезды в этой первой наиболее ранней стадии эволюции трудно.

 

Известно  несколько рассеянных звездных скоплений, состоящих из звезд классов О и В и переменных типа Т Тельца. Такие звезды еще не пришли в состояние равновесия, и этим, вероятно, объясняется типичный для них неправильный характер изменения блеска. Эти звезды связаны с пылевыми туманностями, которые являются остатками первоначальных скоплений диффузной материи.

 

Находясь  на главной последовательности, звезды длительное время излучают энергию  благодаря термоядерным реакциям, почти  не испытывая каких- либо внешних изменений: радиус, светимость и масса остаются почти постоянными. Положение звезды на главной последовательности определяется ее массой. Ниже главной последовательности на диаграмме спектр - светимость проходит последовательность ярких субкарликов. Они отличаются от звезд главной последовательности химическим составом: содержание тяжелых элементов в субкарликах в несколько десятков раз меньше. Причина этого отличия, связанна с тем, что субкарлики являются звездами сферической составляющей.

 

В результате термоядерных реакций, протекающих  в недрах звезды, происходит постепенная  переработка водорода в гелий ("выгорание" водорода). Время пребывания на главной последовательности зависит от скорости термоядерных реакций, а скорость реакций от температуры. Чем больше масса звезды, тем выше должна быть температура в ее недрах, чтобы газовое давление могло уравновесить вес вышележащих слоев. Поэтому ядерные реакции в более массивных звездах идут быстрее и время пребывания на главной последовательности для них меньше, так как быстрее расходуется энергия.

 

Звезды В0 остаются на главной последовательности менее 107 лет, в то время как для Солнца и звезд более поздних спектральных классов период пребывания на главной последовательности превышает 1010 лет. Ядерные реакции идут только в центральной части звезды. В этой области (конвективное ядро звезды) вещество все время перемешивается. При выгорании водорода радиус и масса конвективного ядра уменьшаются. Расчеты показывают, что звезда при этом перемещается по диаграмме спектр - светимость вправо. Более массивные звезды перемещаются быстрее, и в результате верхний конец главной последовательности постепенно отклоняется вправо.

 

Когда весь водород в ядре звезды превратится  в гелий, вторая стадия эволюции (стадия главной последовательности) заканчивается. Реакции превращения водорода в гелий продолжают идти только на внешней границе ядра. Расчеты показывают, что при этом ядро сжимается, плотность и температура в центральной части звезды возрастают, увеличивается светимость и радиус звезды. Звезда сходит с главной последовательности и становится красным гигантом, вступая в третью стадию эволюции.

 

У шаровых  и старых рассеянных скоплений хорошо представлена ветвь красных гигантов. Это означает, что большинство  наблюдаемых звезд этих скоплений  находится в третьей стадии эволюции. Ветвь красных гигантов для звезд рассеянных скоплений идет ниже, чем для звезд шаровых скоплений, а главная последовательность, наоборот, выше.

 

Теоретически  это можно объяснить более  низким содержанием тяжелых элементов в звездах шаровых скоплений. Наблюдения показывают, что в звездах сферической подсистемы, к которой принадлежат шаровые скопления, относительное обилие тяжелых элементов меньше, чем в звездах плоской подсистемы. Таким образом, наблюдения удовлетворительно согласуются с теоретическими представлениями об эволюции звезд и подтверждают их.

 

Предполагается, что в стадии красного гиганта (или  сверхгиганта) в плотном ядре звезды в течение некоторого времени  может идти реакция превращения гелия в углерод. Для этого температура в центральных частях звезды должна достигать 1.5 108 °K. Расчеты показывают, что такие звезды должны располагаться на диаграмме цвет - светимость слева от главной ветви красных гигантов. Когда гелиевая реакция внутри ядра и водородные реакции на его границе исчерпывают себя, третья стадия эволюции (стадия красного гиганта) приходит к концу. Протяженная оболочка гиганта при этом расширяется, ее наружные слои не могут удерживаться силой тяготения и начинают отделяться. Звезда теряет вещество, и масса ее уменьшается.

 

У красных  гигантов и сверхгигантов действительно  иногда имеет место истечение  вещества из атмосферы. В этом случае процесс происходит медленно. Однако при некоторых условиях звезда может  быстро выбросить существенную часть  массы, и процесс будет иметь  характер взрыва, катастрофы. Такого рода взрывы мы наблюдаем при вспышках сверхновых звезд.

 

При медленном  истечении вещества из красных гигантов, по- видимому, образуются планетарные туманности. Когда протяженная оболочка гиганта рассеется, остается только ее центральное ядро, полностью лишенное водорода. В случае звезд с массой, не превосходящей солнечную в 2-3 раза, вещество ядра находится в вырожденном состоянии, так же как и вещество белых карликов. Поэтому кажется очень вероятным, что белые карлики и являются четвертым и последним этапом эволюции таких звезд, следующим за стадией красного гиганта. И в самом деле, в старых звездных скоплениях имеется некоторое количество белых карликов, а в молодых они отсутствуют. В белых карликах, как мы знаем, ядерные реакции не идут. Белые карлики светят за счет запаса тепловой энергии, накопленной в прошлом, и постепенно остывают, превращаясь в ненаблюдаемых "черных" карликов.

 

Белые карлики - это остывающие, умирающие звезды. Звезды, превосходящие Солнце по массе в несколько раз, уже не могут переходить в фазу белого карлика, потому что их гелиевые ядра не находятся в вырожденном состоянии. Предполагается, что в этом случае третий этап эволюции кончается образованием нейтронной звезды и взрывом сверхновой.

 

Известно, что  звезды спектральных классов О, В, А вращаются очень быстро - экваториальная скорость вращения у них, как правило, превышает 100 км/сек. Скорости вращения звезд класса F в среднем меньше 100 км/сек, а звезды более холодные, чем F, вращаются настолько медленно, что доплеровское расширение линий слишком мало и скорость вращения нельзя измерить. Верхний предел скорости вращения звезд классов G, К, М, принадлежащих к главной последовательности, составляет несколько десятков км/сек, но на самом деле вращение может быть гораздо медленнее. Например, у Солнца, типичной звезды класса G, скорость вращения точек экватора составляет всего лишь около 2 км/сек.

 

Из наблюдений диффузных туманностей следует, что отдельные сгустки вещества движутся в них друг относительно друга со скоростями порядка 1 км/сек. Поэтому первичная туманность, из которой образуется звезда всегда должна иметь некоторый начальный момент количества движения. Но если бы этот момент количества движения сохранялся, то звезды не могли бы образоваться, так как туманность, сжимаясь, увеличивала бы скорость вращения и разорвалась бы задолго до этого. Очевидно, что момент количества движения должен каким-то образом удаляться из туманности.

 

Конденсирующаяся  туманность связана с окружающей менее плотной средой магнитным  полем, и так как межзвездная  материя "приклеена" к магнитным силовым линиям, то вращение конденсирующейся туманности передается окружающей среде и туманность теряет момент количества движения. Передача момента количества движения прекращается, когда плотность протозвезды становится достаточно высокой, и окончательно сконденсировавшаяся звезда должна иметь экваториальную скорость в несколько сотен километров в секунду, независимо от ее массы.

 

Для горячих  звезд наблюдения дают как раз  такую скорость вращения. У холодных же звезд скорость вращения гораздо  меньше. Так, в Солнечной системе 98% момента количества движения принадлежит  планетам и только 2% Солнцу. Естественно возникает мысль, что медленное вращение холодных звезд может быть объяснено наличием у них планетных систем, аналогичных Солнечной системе. Если это так, то число планетных систем в Галактике очень велико.

 

Из  чего образуются звёзды?

 

Ещё Гершель  обнаружил на фоне Млечного Пути тёмные провалы, которые он называл «дырами в небесах». В 1913 г. астроном Эдуард Барнард нашел около 200 тёмных туманностей. По его мнению, они представляли собой облака поглощающей свет материи, а вовсе не промежутки между звёздами, как считал Гершель.

 

Это предположение  подтвердилось. Рядом с облаком  межзвёздного газа или внутри него, горячей звезды, газ остаётся холодным и не светится. В межзвёздной среде в небольшом количестве (около 1% по массе) есть мелкие твёрдые частицы – пылинки размерами около 1 мкм и меньше, которые поглощают свет далёких звёзд. Потому-то холодное облако и кажется тёмным «провалом в небесах». Детальное изучение Млечного пути показало, что очень часто такие «провалы» встречаются в областях звёздообразования, подобных туманностей Ориона.

 

В 1946 г. американский астроном Барт Бок обнаружил на фоне светлых туманностей NGC 2237 в Единороге и NGC 6611 в Щите маленькие чёрные пятна, которые назвал глобулами. Размер их от 0,01 до 1 пк. Они ослабляют свет лежащих за ними звёзд в десятки и сотни раз. Это значит, что вещество глобул в тысячи раз плотнее окружающего их газа. Их масса оценивается в пределах от 0,01 до 100 масс Солнца.

 

Оптические  телескопы не дают полного представления  о межзвёздной среде: с их помощью  мы видим лишь горячие облака, нагретые массивными звёздами (как туманность Ориона), или маленькие тёмные глобулы  на светлом фоне. Это  – довольно редкие образования. Только созданные в 50-е годы радиотелескопы позволили обнаружить по излучению в линии 21 см атомарный водород, заполняющий почти всё пространство между звёздами.

 

Это очень  разреженный газ: примерно один атом в кубическом сантиметре пространства (по меркам земных лабораторий - высочайший вакуум!). Межзвёздный газ более чем на 67% (по массе) состоит из водорода, на 28% из гелия, и менее 5% приходится на все остальные элементы, самые обильные среди которых – кислород, углерод и азот.

 

Межзвёздного  газа особенно много вблизи плоскости  Галактики. Почти весь он сосредоточен в слое толщиной 600 световых лет и диаметром около 30 кпк, или 100 тыс. световых лет (это диаметр галактического диска). Но и в таком тонком слое газ распределён неравномерно. Он концентрируется в спиральных рукавах Галактики, а там разбит на отдельные крупные облака протяженностью в парсеки и даже в десятки парсек, а массой в сотни и тысячи масс Солнца. Плотность газа в них порядка 100 атомов на кубический сантиметр, температура около -200°С. критические масса и радиус Джинса при таких условиях почти совпадают с массой и радиусом самих облаков, а это значит, что они готовы к коллапсу.

 

Астрономы подозревали, что при относительно высокой  плотности и низкой температуре, царящей в межзвёздных облаках, часть вещества должна объединяться в молекулы. В этом случае важнейшая часть межзвёздной среды недоступна наблюдениям в оптическом диапазоне.

 

Начавшиеся  в 1970 г. ультрафиолетовые наблюдения с ракет и спутников позволили открыть главную молекулу межзвёздной среды – молекулу водорода (Н2). А при наблюдении межзвёздного пространства радиотелескопами сантиметрового и миллиметрового диапазонов были обнаружены десятки других молекул, порой довольно сложных, содержащих до 13 атомов. В их числе молекулы воды, аммиака, формальдегида, этилового спирта и даже аминокислоты глицерина.

 

Как выяснилось, около половины межзвёздного газа содержится в молекулярных облаках. Их плотность  в сотни раз больше, чем у  облаков атомарного водорода, а температура  всего на несколько градусов выше абсолютного нуля. Именно при таких условиях возникают неустойчивые к гравитационному сжатию отдельные уплотнения в облаке массой порядка массы Солнца, и становится возможным формирование звёзд.

 

Ближайшие к  нам области звёздообразования  – это тёмные облака в созвездиях Тельца и Змееносца. Подальше расположен огромный комплекс облаков в Орионе.

 

Жизнь черного облака

 

Молекулярные  облака устроены значительно сложнее, чем знакомые нам облака водяного пара в земной атмосфере. Снаружи  молекулярное облако покрыто толстым слоем атомарного газа, поскольку проникающее туда излучение звёзд разрушает хрупкие молекулы. Но находящаяся в наружном слое пыль поглощает излучение, и глубже, в тёмных недрах облака, газ почти полностью состоит из молекул.

 

Структура облаков  постоянно изменяется под действием  взаимных столкновений, нагрева звёздным излучением, давления межзвёздных магнитных полей. В разных частях облака плотность газа различается в тысячу. Когда плотность облака (или отдельной его части) становится настолько большой, что гравитация преодолевает газовое давление, облако начинает неудержимо коллапсировать. Размер его уменьшается всё быстрее и быстрее, а плотность растёт. Небольшие неоднородности плотности в процессе коллапса усиливаются, и в итоге облако фрагментирует, т.е. распадается на части, каждая из которых продолжает самостоятельное сжатие.

 

При коллапсе возрастают температура и давление газа, что препятствует дальнейшему увеличению плотности. Но пока облако прозрачно для излучения, оно легко остывает и сжатие не прекращается. Большую роль в дальнейшем играет космическая пыль. В тёмных облаках пылинки поглощают энергию газа и перерабатывают её в инфракрасное излучение, которое легко покидает облако, унося излишки тепла. Наконец из-за увеличения плотности отдельных фрагментов облака газ становится менее прозрачным. Остывание затрудняется, и возрастающее давление останавливает коллапс. В будущем из каждого фрагмента образуется звезда, а все вместе они составляют группу молодых звёзд в недрах молекулярного облака.

 

Коллапс плотной  части облака в звезду, а чаще – в группу звёзд продолжается несколько миллионов лет (сравнительно быстро по космическим масштабам). Новорожденные звёзды разогревают окружающий газ, и под действием высокого давления остатки облака разлетаются. Именно этот этап мы видим в туманности Ориона. Но по соседству с ней продолжается формирование будущих поколений звёзд. Для света эти области совершенно непрозрачны и наблюдаются только с помощью инфракрасных и радиотелескопах.

Информация о работе Процесс эволюции звезд