Развитие и возникновение галактик и звёзд

Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 11:54, реферат

Описание работы

К началу нашего века границы разведанной Вселенной раздвинулись настолько, что
включили в себя Галактику. Многие, если не все, думали тогда, что эта огромная
звездная система и есть вся Вселенная в целом.

Содержание работы

1. Введение…………………………………………………………………………………..1
2. Происхождение и развитие звезд………………………………………………………..3
2.1 Межзвездный газ………………………………………………………………………..3
2.2 Межзвездная пыль………………………………………………………………………5
2.3 Почему должны рождаться новые звезды?....................................................................6
2.4 Эволюция звезд………………………………………………………….........................8
3. Происхождение и развитие галактик………………………………………………….12
3.1 Взгляды различных ученых на процессы рождение и развитие галактик………...12
3.2 Современные представления о процессах развития и происхождения галактик…19
4. Заключение………………………………………………………………………………23
5. Список используемой литературы……………………………………………………..24

Файлы: 1 файл

Естествознание.doc

— 139.50 Кб (Скачать файл)

 

Содержание:

1. Введение…………………………………………………………………………………..1

2. Происхождение и развитие звезд………………………………………………………..3

2.1 Межзвездный газ………………………………………………………………………..3

2.2 Межзвездная пыль………………………………………………………………………5

2.3 Почему должны рождаться новые звезды?....................................................................6

2.4 Эволюция звезд………………………………………………………….........................8

3. Происхождение  и развитие галактик………………………………………………….12

3.1 Взгляды различных ученых на процессы рождение и развитие галактик………...12

3.2 Современные представления о процессах развития и происхождения галактик…19

4. Заключение………………………………………………………………………………23

5. Список используемой  литературы……………………………………………………..24

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение.

К началу нашего века границы разведанной Вселенной раздвинулись настолько, что

включили в  себя Галактику. Многие, если не все, думали тогда, что эта огромная

звездная система  и есть вся Вселенная в целом.

Но вот в 20-е  годы были построены новые крупные  телескопы, и перед астрономами

открылись совершенно неожиданные горизонты. Оказалось, что за пределами

Галактики мир  не кончается. Миллиарды звездных систем, галактик, похожих на

нашу и отличающихся от нее, рассеяны тут и там по просторам  Вселенной.

Фотографии  галактик, сделанные с помощью самых больших телескопов, поражают

красотой и  разнообразием форм: это и могучие  вихри звездных облаков, и

правильные  шары, а иные звездные системы вообще не обнаруживают никаких

определенных  форм, они клочковаты и бесформенны. Все эти типы галактик 

спиральные, эллиптические, неправильные, - получившие названия по своему виду

на фотографиях, открыты американским астрономом Э. Хабблом в 20  30-е годы

нашего века.

Если бы мы могли  увидеть нашу Галактику издалека, то она предстала бы перед

нами совсем не такой, как на схематическом рисунке. Мы не увидели бы ни диска,

ни гало, ни, естественно, короны. С больших расстояний были бы видны лишь самые

яркие звезды. А  все они, как выяснилось, собраны  в широкие полосы, которые

дугами выходят  из центральной области Галактики. Ярчайшие звезды образуют ее

спиральный  узор. Только этот узор и был бы различим издалека. Наша Галактика на

снимке, сделанном  астрономом из какого - то  звездного мира, выглядела бы очень

похожей на туманность Андромеды.

Исследования  последних лет показали, что многие крупные спиральные галактики

обладают   как и наша Галактика   протяженными и массивными невидимыми

коронами. Это  очень важно: ведь если так, то, значит, и вообще чуть ли не вся

масса Вселенной (или, во всяком случае, подавляющая  ее часть)   это загадочная,

невидимая, но тяготеющая  скрытая  масса

Многие, а может  быть, и почти все галактики  собраны в различные коллективы,

которые называют группами, скоплениями и сверхскоплениями, смотря по тому,

сколько их там, В группу может входить всего три или четыре галактики, а в

сверхскопление   до тысячи или даже нескольких десятков тысяч. Наша Галактика,

туманность  Андромеды и еще более тысяч  таких же объектов в так называемое

Местное сверхскоплениях. Оно не имеет четко 

очерченной  формы.

Небесные тела находятся в непрерывном движении и изменении. Когда и как именно

они произошли, наука стремится выяснить, изучая небесные тела и их системы.

Раздел астрономии, занимающийся проблемами происхождения  и эволюции небесных

тел, называется космогонией.

Современные научные  космогонические гипотезы   результат физического,

математического и философского обобщения многочисленных наблюдательных данных.

В космогонических  гипотезах, присущих данной эпохе, в  значительной мере находит

свое отражение  общий уровень развития естествознания. Дальнейшее развитие

науки, обязательно  включающее в себя астрономические  наблюдения, подтверждает

или опровергает  эти гипотезы. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Происхождение  и развитие звёзд  

 

2.1 Межзвездный газ. Для того чтобы лучше понять процесс рождения звезд, нужно

вначале изучить  пространство между звездами. Потребовалось, однако,

тысячелетнее  развитие науки, чтобы человечество осознало. Простой и вместе с

тем величественный факт, что звезды   это объекты, более или менее похожие на

солнце, но только стоящие от нас на несравненно большие расстояния. Ньютон был

первым, кто  правильно оценил расстояния до звезд. Два столетия после великого

английского ученного почти всеми молчаливо принималось, что чудовищно больших

размеров пространство, в котором находятся звезды, есть абсолютная пустота.

Лишь отдельные  астрономы время от времени поднимали  вопрос о возможном

поглощении  света в межзвездной среде. Только в самом начале ХХ столетия

немецкий астроном Гартман убедительно доказал, что  пространство между звездами

представляет  собой отнюдь не мифическую пустоту. Оно заполнено газом, правда с

очень малой, но вполне определенной плотностью. Это  выдающееся открытие, так же

как и многие другие, было сделано с помощью  спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем

анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно

часто эти линии  имеют сложную структуру, то есть состоят из нескольких близко

расположенных друг к другу компонентов. Каждая такая компонента возникает при

поглощении  света звезды в каком-нибудь определенном облаке межзвездной среды,

причем облака движутся относительно друг друга со скоростью, близкой к

10км/сек. Это  и приводит благодаря эффекту  Доплера к незначительному смещению

длин волн линий  поглощения.

Химический  состав межзвездного газа в первом приближении оказался довольно

близким к химическому  составу Солнца и звезд. Преобладающими элементами

являются водород  и гелий, между тем как остальные  элементы мы можем

рассматривать как  ПРИМЕСИ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Межзвездная пыль. В межзвездной среде есть и другая компонента. Речь идет о

межзвездной пыли. Еще в прошлом столетии дебатировался  вопрос о прозрачности

межзвездного  пространства. Только 1930 года с несомненностью было доказано, что

межзвездное пространство действительно не совсем прозрачно. Поглощающая свет

субстанция  сосредоточенно в довольно тонком слое около галактической плоскости.

Сильнее всего  поглощаются синие и фиолетовые лучи, между тем как поглощение в

красных лучах  сравнительно невелико.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение

света обусловлено  межзвездной пылью, то есть твердыми микроскопическими

частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный

химический  состав. Установлено, что пылинки  имеют довольно вытянутую форму  и в

какой-то степени  ориентируются , то есть направления их вытянутости имеют

тенденцию  выстраиваться  в данном облаке более или менее параллельно. По этой

причине проходящий через тонкую среду звездный свет становится частично

поляризованным.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Почему должны рождаться новые звезды?

Значение газово-пылевых  комплексов в современной астрофизике  очень велико. Дело

в том, что уже  давно астрономы, в значительной степени интуитивно, связывали

образования конденсации  в межзвездной среде с важнейшим  процессом образования

звезд из  диффузной  сравнительно разряженной газово-пылевой среды. Какие же

основания существуют для предположения о связи между газово-пылевыми

комплексами и  процессом звездообразования? Прежде всего следует подчеркнуть,

что уже по крайней  мере с сороковых годов нашего столетия астрономам ясно, что

звезды в  Галактике должны непрерывно (то есть буквально  на наших глазах )

образовываться из какой-то качественно другой субстанции. Дело в том что к 1939

году было установлено, что источником звездной энергии  является происходящий в

недрах звезд  термоядерный синтез. Грубо говоря, подавляющее большинство звезд

излучают потому, что в их недрах четыре протона соединяются через ряд

промежуточных этапов в одну альфа- частицу. Так  как масса одного протона (в

атомных единицах ) равна 4,0039, то избыток массы, равный 0,007 атомной единицы

на протон, должен выделиться как энергия. Тем самым определяется запас ядерной

энергии в звезде, которая постоянно тратиться  на излучение. В самом

благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не

более, чем на 100 миллионов лет, в то время как  реальных условиях эволюции

время жизни звезды оказывается на порядок меньше этой явно завышенной оценки.

Но десяток  миллионов лет   ничтожный срок для эволюции нашей Галактики, возраст

который никак  не меньше чем 10 миллиардов лет. Возраст  массивных звезд уже

соизмерим с  возрастом человека на земле! Значит звезды ( по крайней мере,

массивные с  высокой светимостью) никак не могут  быть в Галактике  изначально ,

то есть с  момента ее образования. Оказывается, что ежегодно в Галактике 

умирает  по меньшей мере одна звезда. Значит, для того, чтобы  звездное пламя

не  выродилось , необходимо, чтобы столько же звезд в среднем образовывалось в

нашей Галактике  каждый год. Для того, чтобы в течении  длительного времени

(исчисляемого  миллиардами лет) Галактика сохраняла  бы неизменными свои основные

особенности (например, распределение звезд по классам, или, что практически

одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически

поддерживалось  динамическое равновесие межу рождающимися и  гибнущими

звездами. В  этом отношение Галактика похожа на первобытный лес, состоящий из

деревьев различных  видов и возрастов, причем возраст  деревьев меньше возраста

леса. Имеется, правда, одно важное различие между  Галактикой и лесом. В

Галактике время  жизни звезды с массой меньше солнечной  превышает ее возраст.

Поэтому следует  ожидать постепенного увеличения звезд  со сравнительно небольшой

массой, так  как они пока еще не успели умереть, а рождаться продолжают. Но для

более массивных  звезд упомянутое выше динамическое равновесие неизбежно должно

выполняться. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Эволюция звезд. Современная астрономия располагает большим количеством

аргументов  в пользу утверждения, что звезды образуются путем конденсации

облаков газово-пылевой  межзвездной среды.

Важным аргументом в пользу вывода, о том, что звезды образуются из межзвездной

газово-пылевой  среды, служит расположение групп заведомо молодых звезд в

спиральных  ветвях Галактики. Наибольшая плотность  межзвездного газа наблюдаются

на внутренних краях спирали.

Центральным в  проблеме эволюции звезд является вопрос об источниках их энергии.

Успехи ядерной  физики позволили решить эту проблему. Таким источником является

термоядерные  реакции синтеза, происходящие в  недрах звезд при господствующей

там очень высокой  температуре (порядка десяти миллионов  градусов).

В результате этих реакций, скорость которых сильно зависит  от температуры,

протоны превращаются в ядра гелия, а освобождающаяся  энергия медленно 

просачивается  сквозь недра звезд и излучается в мировое пространство. Это

исключительно мощный источник. Если предположить, что изначально солнце

состояло только из водорода, который в результате термоядерных реакций целиком

превратился в  гелий, то выделившееся количество энергии  составит примерно 1052

эрг.

Теперь мы можем  представить картину эволюции какой-нибудь звезды следующим

образом. По некоторым  причинам начало конденсироваться облако межзвездной

газово-пылевой  среды. Довольно скоро (разумеется, по астрономическим

масштабам!) под  влиянием сил всемирного тяготения  из этого облака образуется

сравнительно плотный непрозрачный газовый шар. Давление газа внутри шара не в

состоянии пока уравновесить сил протяжения отдельных  его частей, поэтому он

( протозвезды  ) будет непрерывно сжиматься.  Ее размеры становятся меньше, а

поверхностная температура растет, вследствие чего спектр становится более 

ранним .

Таким образом, двигаясь по диаграмме  спектр   светимость , протозвезда

довольно быстро  сядет  на главную последовательность. В этот период

температура звездных недр уже оказывается достаточной для того, чтобы начались

термоядерные  реакции. При этом давление газа будущей  звезды уравновешивает

притяжение  и газовый шар перестает сжиматься. Протозвезда становится звездой.

Чтобы пройти эту  самую раннюю стадию своей эволюции, протозвездам нужно

сравнительно  немного времени. Если, например, масса  протозвезды больше

Информация о работе Развитие и возникновение галактик и звёзд