Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 20:42, доклад
Процесс образования химических элементов во Вселенной неразрывно связан с эволюцией Вселенной. Первые атомы химических элементов, находящиеся в начале таблицы Д. И. Менделеева (водород, гелий), начали образовываться во Вселенной еще до возникновения звезд первого поколения. Именно в звездах, их недрах, разогретых снова до миллиардов градусов, и были произведены ядра химических элементов, следующих за гелием. Учитывая значение звезд как источников, генераторов химических элементов, рассмотрим некоторые этапы звездной эволюции. Без понимания механизмов звездообразования и эволюции звезд невозможно представить процесс образования тяжелых элементов, без которых, в конечном счете, не возникла бы жизнь.
Возникновение и эволюция звезд. Происхождение химических элементов
Процесс образования химических элементов во Вселенной неразрывно связан с эволюцией Вселенной. Первые атомы химических элементов, находящиеся в начале таблицы Д. И. Менделеева (водород, гелий), начали образовываться во Вселенной еще до возникновения звезд первого поколения. Именно в звездах, их недрах, разогретых снова до миллиардов градусов, и были произведены ядра химических элементов, следующих за гелием. Учитывая значение звезд как источников, генераторов химических элементов, рассмотрим некоторые этапы звездной эволюции. Без понимания механизмов звездообразования и эволюции звезд невозможно представить процесс образования тяжелых элементов, без которых, в конечном счете, не возникла бы жизнь.
Эволюция звезд. Механизм
образования и эволюции основных
объектов Вселенной — звезд, изучен
наиболее xорошо. Здесь ученым помогла
возможность наблюдать огромное количество
звезд на самых разных стадиях развития
— от рождения до смерти, — в том числе
множество так называемых “звездных ассоциаций”
— групп звезд, родившихся почти одновременно.
Помогла и сравнительная “простота”
строения звезды, которое довольно успешно
поддается теоретическому описанию и
компьютерному моделированию.
Звезды образуются из газовых облаков,
которые, при определенных обстоятельствах,
распадаются на отдельные “сгустки”,
которые дальше сжимаются под действием
собственного тяготения. Сжатие - следствие
гравитационной неустойчивости, идея
Ньютона. Позже Джинс определил минимальные
размеры облаков, в которых может начаться
самопроизвольное сжатие.
Сжатию газа под действием
собственного тяготения препятствует
повышающееся давление. При адиабатическом
сжатии должна повышаться и температура
— в виде тепла выделяется гравитационная
энергия связи. Пока облако разреженное,
все тепло легко уходит с излучением, но
в плотном ядре сгущения вынос тепла затруднен,
и оно быстро разогревается. Соответствующее
повышение давления тормозит сжатие ядра,
и оно продолжает происходить только за
счет продолжающего падать на рождающуюся
звезду газа. С ростом массы растет давление
и температура в центре, пока наконец последняя
не достигает величины 10 миллионов Кельвинов.
В этот момент в центре звезды начинаются
ядерные реакции, превращающие водород
в гелий, которые поддерживают стационарное
состояние вновь образовавшейся звезды
миллионы, миллиарды или десятки миллиардов
лет, в зависимости от массы звезды.
Звезда превращается в огромный термоядерный
реактор. Выделяемое при реакции тепло
стабилизирует звезду, поддерживая внутреннее
давление и препятствуя ее дальнейшему
сжатию. Небольшое случайное усиление
реакции слегка “раздувает” звезду, и
соответствующее уменьшение плотности
приводит снова к ослаблению реакции и
стабилизации процесса. Звезда “горит”
с почти неизменной яркостью.
Температура и мощность излучения звезды
зависит от ее массы, причем зависит нелинейно.
Грубо говоря, при увеличении массы звезды
в 10 раз мощность ее излучения увеличивается
в 100 раз. Поэтому более массивные, более
горячие звезды расходуют свои запасы
топлива гораздо быстрее, чем менее массивные,
и живут относительно недолго. Нижний
предел массы звезды, при котором еще возможно
достижение в центре температур, достаточных
для начала термоядерных реакций, составляет
примерно 0,06 солнечной. Верхний предел
— около 70 солнечных масс. Соответственно,
самые слабые звезды светят в несколько
сот раз слабее Солнца и могут так светить
сотню миллиардов лет, гораздо больше
времени существования нашей Вселенной.
Массивные горячие звезды могут светить
в миллион раз сильнее Солнца и живут лишь
несколько миллионов лет. Время стабильного
существования Солнца примерно 10 миллиардов
лет, и из этого срока оно прожило пока
половину.
Стабильность звезды нарушается, когда
выгорает значительная часть водорода
в ее недрах. Образуется лишенное водорода
гелиевое ядро, а горение водорода продолжается
в тонком слое на его поверхности. При
этом ядро сжимается, в центре его давление
и температура повышается, в то же время
верхние слои звезды, расположенные выше
слоя горения водорода, наоборот, расширяются.
Диаметр звезды растет, а средняя плотность
падает. Благодаря росту площади излучающей
поверхности, медленно растет также ее
полная светимость, хотя температура поверхности
звезды падает. Звезда превращается в
красного гиганта. В какой-то момент времени
температура и давление внутри гелиевого
ядра оказываются достаточными для начала
следующих реакций синтеза более тяжелых
элементов — углерода и кислорода из гелия,
а на следующем этапе и еще более тяжелых.
В недрах звезды могут образоваться из
водорода и гелия многие элементы Периодической
системы, но только вплоть до элементов
группы железа, обладающего наибольшей
энергией связи, приходящейся на одну
частицу. Более тяжелые элементы образуются
в других более редких процессах, а именно
при взрывах сверхновых звезд и частично
новых, и поэтому в природе их мало.
Пока вблизи центра звезды
идет горение водорода, температура
там не может подняться до порога
гелиевой реакции. Для этого необходимо,
чтобы горение прекратилось, и
ядро звезды начало остывать. Остывающее
ядро звезды сжимается, при этом повышается
напряженность поля тяготения и
выделяется гравитационная энергия, которая
нагревает вещество. При повышенной
напряженности поля необходима более
высокая температура, чтобы давление
могло противостоять сжатию, и
гравитационной энергии оказывается
достаточно, чтобы обеспечить эту
температуру. Аналогичный парадокс
мы имеем при снижении космического
аппарата: чтобы перевести его
на более низкую орбиту, его надо
притормозить, но при этом он оказывается
ближе к Земле, где сила тяжести
больше, и скорость его возрастет.
Остывание увеличивает
После начала горения гелия расходование
энергии идет очень быстрыми темпами,
так как энергетический выход всех реакций
с тяжелыми элементами намного ниже, чем
при реакции горения водорода и, кроме
того, общая светимость звезды на этих
этапах значительно возрастает. Если водород
горит миллиарды лет, то гелий миллионы,
а все остальные элементы — не более тысяч
лет. Когда в недрах звезды все ядерные
реакции затухают, ничто уже не может препятствовать
ее гравитационному сжатию, и оно происходит
катастрофически быстро. Верхние слои
падают к центру с ускорением свободного
падения , выделяя огромную гравитационную
энергию. Вещество сжимается. Часть его,
переходя в новое состояние высокой плотности,
образует звезду-остаток, а часть выбрасывается
в пространство в виде отраженной ударной
волны с огромной скоростью. Происходит
взрыв сверхновой звезды.
На какой стадии
эволюции звезды остановится сжатие
и что будет представлять собой остаток
сверхновой, все эти варианты зависят
от ее массы. Если эта масса менее 1,4 солнечной,
это будет белый карлик, звезда с плотностью
109 кг/м3, медленно остывающая без внутренних
источников энергии. От дальнейшего сжатия
ее удерживает давление вырожденного
электронного газа. При большей массе
(примерно до 2,5 солнечной) образуется
нейтронная звезда (их существование предсказано
великим советским физиком, нобелевским
лауреатом Львом Ландау) с плотностью
примерно равной плотности атомного ядра.
Нейтронные звезды были открыты как так
называемые пульсары. При еще большей
исходной массе звезды образуется черная
дыра — безудержно сжимающийся объект,
который не может покинуть ни один объект,
даже свет. Именно при взрывах сверхновых
происходит образование элементов тяжелее
железа, для которых нужны чрезвычайно
плотные потоки частиц высокой энергии,
чтобы были достаточно вероятны многочастичные
столкновения. Все материальное в этом
мире является потомками сверхновых, в
том числе и люди, поскольку атомы, из которых
мы состоим, возникли когда-то при взрывах
сверхновых.
Таким образом, звезды являются не только
мощным источником энергии высокого качества,
рассеяние которой способствует возникновению
сложнейших структур, включающих и жизнь,
но и реакторами, в которых производится
вся таблица Менделеева — необходимый
материал для этих структур. Взрыв заканчивающей
свою жизнь звезды выбрасывает в пространство
огромное количество разнообразных элементов
тяжелее водорода и гелия, которые смешиваются
с галактическим газом. За время жизни
Вселенной закончили свою жизнь очень
многие звезды. Все звезды типа Солнца
и более массивные, возникшие из первичного
газа, уже прошли свой жизненный путь.
Так что сейчас Солнце и ему подобные звезды
— это звезды второго поколения (а может
быть, и третьего), существенно обогащенные
тяжелыми элементами. Без такого обогащения
вряд ли около них могли бы возникнуть
планеты земного типа и жизнь.
Приведем информацию о распространенности
некоторых химических элементов во Вселенной:
Как видим из этой таблицы, преимущественными химическими элементами и в настоящее время являются водород и гелий (почти 75% и 25% каждый). Относительно малого содержания тяжелых элементов, впрочем, оказалось достаточным для образования жизни (по крайней мере, на одном из островков Вселенной вблизи “рядовой” звезды, Солнца — желтого карлика). Помимо уже указанного нами ранее, надо помнить, что в открытом космическом пространстве присутствуют космические лучи, по сути являющиеся потоками элементарных частиц, в первую очередь, электронов и протонов разных энергий. В некоторых областях межзвездного пространства имеются локальные области повышенной концентрации межзвездного вещества, получившие название межзвездных облаков. В отличие от плазменного состава звезды, вещество межзвездных облаков уже содержит молекулы и молекулярные ионы.
Информация о работе Возникновение и эволюция звезд. Происхождение химических элементов