Анализ организованной сети обмена информацией между офисами ОАО «Тревожное зарево» и возможность внедрения технологии VoIP

Автор работы: Пользователь скрыл имя, 21 Февраля 2013 в 06:21, дипломная работа

Описание работы

Разработка имеет большое значение с точки зрения безопасности жизнедеятельности, так как добыча полезных ископаемых, а так же работа в рудниках и шахтах в удаленных районах являются достаточно опасными для жизни человека видами деятельности, и в случае возникновения аварийных ситуаций большое значение имеет стабильность связи с «большим миром», возможность вызвать помощь.
Цель моей работы – наладить прямую и дешевую телефонную связь между основным офисом ОАО «Тревожное зарево» в г. Петропавловске-Камчатском и рудником в п.Асача.

Содержание работы

Введение 8
Анализ организованной сети обмена информацией между офисами
ОАО «Тревожное зарево» и возможности внедрения технологии VoIP 9
Связь посредством системы GlobalStar 9
Передача данных через спутниковый канал 10
Сетевая технология TCP/IP 12
Анализ возможности внедрения технологии VoIP 19
Определение технологии VoIP и её преимущества перед традиционными
каналами связи 19
Основные принципы работы 21
Протоколы передачи данных 22
Голосовые кодеки 24
Построение сетей IP-телефонии на базе протокола SIP 27
Механизм оптимизации задержек в сети 31
Показатели качества связи IP-телефонии 32
Разработка автоматизированной системы выбора оптимального маршрута 34
Выбор программного обеспечения 34
3CX Phone System 34
Softswitch MERA 34
Cisco AVVID 35
IP-PBX Asterisk 36
Разработка топологической структуры сети 37
Выбор сервера 37
Выбор факсового/голосового шлюза 38
Выбор IP-телефонов и аналоговых телефонных аппаратов 39
Разработка алгоритма функционирования системы 43
Разработка конфигураций АТС 45
Установка Linux 45
Установка Asterisk 47
Настройка голосовых шлюзов 49
Настройка конфигурации станции г. Петропавловск-Камчатский 55
Настройка конфигурации станции п. Асача 62
Экономическое обоснование 63
Введение 63
Расчёт текущих затрат по созданию проекта 63
Безопасность жизнедеятельности 65
Требования, предъявляемые к помещениям 65
Условия труда на рабочем месте 65
Расчет естественного освещения 66
Расчет искусственного освещения 67
Анализ воздействия электромагнитных излучений 68
Анализ электробезопасности на рабочем месте 69
Обеспечение пожарной безопасности 70
Анализ шума на рабочем месте 71
Эргономические требования 72
Экологическое обоснование 74
Заключение 77
Список источников 78
Приложение А. Расчет стоимости требуемого оборудования 80
Приложении Б. Конфигурационные файлы станции г. Петропавловск-Камчатский 81
Приложение В. Конфигурационные файлы станции п. Асача 96

Файлы: 1 файл

Диплом Asterisk.doc

— 2.77 Мб (Скачать файл)

Для всех типов кодеков  справедливо правило: чем меньше плотность цифрового потока, тем больше восстановленный сигнал отличается от оригинала. Однако восстановленный сигнал гибридных кодеков обладает вполне высокими характеристиками, восстанавливается тембр речевого сигнала, его динамические характеристики, другими словами, его «узнаваемость» и «распознаваемость».

Алгоритм основан на модели кодирования с использованием линейного предсказания с возбуждением по алгебраической кодовой книге (CELP-модель). Кодер оперирует с кадрами речевого сигнала длиной 10 мс, дискретизованными с частотой 8 КГц, что соответствует 80-ти 16-битным отсчётам в линейном законе. Для каждого кадра производится анализ речевого сигнала и выделяются параметры модели (коэффициенты фильтра линейного предсказания, индексы и коэффициенты усиления в адаптивной и фиксированной кодовых книгах). Далее эти параметры кодируются и передаются в канал.

В декодере битовая посылка используется для восстановления параметров сигнала возбуждения и коэффициентов синтезирующего фильтра. Речь восстанавливается путём пропускания сигнала возбуждения через кратковременный синтезирующий фильтр.

Синтезирующий фильтр имеет  полюсную передаточную функцию 10-го порядка. Для работы синтезатора основного тона используется адаптивная кодовая книга. Впоследствии речь улучшается адаптивной постфильтрацией.

В случае потери передаваемой кодером битовой посылки, исходные данные для речевого синтезатора получаются интерполяцией данных с предыдущих «хороших» кадров, но при этом энергия интерполированного речевого сигнала постепенно уменьшается, что не создаёт особого дискомфорта у слушателя.

Вокодер обрабатывает кадры  речевых сигналов длиной 10 мс. Дополнительно существует задержка длиной 5 мс (look-ahead buffer), что в сумме выливается в алгоритмическую задержку 15 мс («10+5»). Задержки речевого сигнала в практическом приложении этого алгоритма также определяются временем, затрачиваемым на:процессы кодирования и декодирования; передачу по каналу; мультиплексирование при комбинировании аудиоданных с другими видами данных.

Поддерживается практически  всеми производителями оборудования. При коммерческом использовании требуется лицензия.

Кодек GSM

GSM - глобальный цифровой стандарт для мобильной сотовой связи, который также включает в себя и кодек. Как речевой кодек, поддерживает скорость передачи данных до 9.6 кбит/с. Позволяет передавать данные по каналам с низкой пропускной способностью и приемлимым качеством голоса.

С учётом возможных потерь пакетов в сети для восстановления речевого потока на приёмной стороне  используется протокол реального времени — Real Time Protocol (RTP). В заголовке данного протокола, в частности, передаются временная метка и номер пакета. Эти параметры позволяют при минимальных задержках определить порядок и момент декодирования каждого пакета, а также интерполировать потерянные пакеты. Восстановленная последовательность, с возможными пропусками как одиночных пакетов, так и групп пакетов, поступает на декодер. Декодер должен обеспечить восстановление речевой информации, заполнение пауз фоновым шумом, а также эхокомпенсацию кодируемого сигнала, обнаружение и детектирование телефонной сигнализации.[8]

 

2.5 Построение сетей IP-телефонии на базе протокола SIP

 

Функциональные  возможности протокола.

Основным вариантом  построения построения сетей, используемым в данной работе, будет протокол SIP, разработанный группой MMUSIC (Multiparty Multime-dia Session Control) комитета IETF (Internet Engineering Task Force). Спецификации протокола представлены в  
документе RFC 2543

Протокол инициирования  сеансов - Session Initiation Protocol (SIP)- является протоколом прикладного уровня и предназначается для организации, модификации и завершения сеансов связи: мультимедийных конференций, телефонных соединений и распределения мультимедийной информации, в основу которого заложены следующие принципы.

Персональная мобильность  пользователей. Пользователи могут перемещаться без ограничений в пределах сети, поэтому услуги связи должны предоставляться им в любом месте этой сети. Пользователю присваивается уникальный идентификатор, а сеть предоставляет ему услуги связи вне зависимости от того, где он находится.

Для этого пользователь с помощью  специального сообщения - REGISTER - информирует о своих перемещениях сервер определения местоположения.

Масштабируемость сети характеризуется, в первую очередь, возможностью увеличения количества элементов сети при ее расширении. Серверная структура сети, построенной на базе протокола SIP, в полной мере отвечает этому требованию.

Расширяемость протокола характеризуется  возможностью дополнения протокола  новыми функциями при введении новых услуг и его адаптации к работе с различными  
приложениями.

Интеграция в стек существующих протоколов Интернет. Протокол SIP является частью глобальной архитектуры мультимедиа, разработанной комитетом Internet Engineering Task Force (IETF).

Взаимодействие с другими протоколами  сигнализации. Протокол SIP может быть использован совместно с протоколом Н.323. Возможно также взаимодействие протокола SIP с системами сигнализации ТфОП - DSS1 и ОКС7.

Одной из важнейших особенностей протокола SIP является его независимость от транспортных технологий. В качестве транспорта могут использоваться протоколы Х.25, Frame Relay, AAL5, IPX и др. Структура сообщений SIP не зависит от выбранной транспортной технологии. Но в то же время предпочтение отдается технологии маршрутизации пакетов IP и протоколу UDP.

Здесь же следует отметить, что  сигнальные сообщения могут переноситься не только протоколом транспортного уровня UDP, но и протоколом ТСР. По сети с маршрутизацией пакетов IP может передаваться пользовательская информация практически любого вида: речь, видео и данные, а также любая их комбинация, называемая мультимедийной информацией. При организации связи между терминалами пользователей необходимо известить встречную сторону, какого рода информация может приниматься (передаваться), алгоритм ее кодирования и адрес, на который ее следует передавать. Таким образом, одним из обязательных условий организации связи при помощи протокола SIP является обмен между предполагаемыми участниками этой связи данными об их функциональных возможностях. Для этой цели чаще всего используется протокол описания сеансов связи SDP (Session Description Protocol). В течение сеанса связи может производиться его модификация, поэтому предусмотрена передача средствами SDP сообщений SIP с новыми описаниями сеанса.

Для передачи речевой информации комитет IETF предлагает использовать протокол RTP, но сам протокол SIP не исключает возможность применения для этих целей других протоколов.

Адресация.

Для того чтобы вызвать кого-то, необходимо знать его адрес или  хотя бы имя. В сети Интернет для  нахождения хоста используется URL (для SIP он обозначается как SIP URL). В качестве адреса в SIP выбран самый распространенный тип - адрес электронной почты. Он уже сейчас является основным адресом, не зависящим от местоположения пользователя. Существуют четыре основные формы адреса: имя@домен, имя@хост, имя@IP-адрес, №телефона-@шлюз.

Адрес состоит из двух частей. Первая - это та часть, в которой указывается  адрес домена, хоста или шлюза. Она может быть представлена и alias-адресом; тогда, чтобы найти IP-адрес, необходимо обратиться к сервису системы DNS. Если же здесь помещен IP-адрес, то никакого преобразования не надо, так как в этом случае достаточно напрямую связаться с адресатом.

Вторая часть адреса - это имя  пользователя в домене или хосте. Если в первой части указан адрес  шлюза, то вторая часть представлена телефонным номером абонента в глобальной или частной системе нумерации.

В начале адреса ставятся слово sip, указывающее, что это именно SIP-адрес, так как  бывают другие (например, mailto).

SIP-адрес может соответствовать  разным физическим адресам в зависимости от времени суток, алгоритма работы и т.п. Он может направлять вызов к одному определенному пользователю, первому свободному из группы пользователей или ко всей группе. Благодаря этому можно организовать такие услуги, как ночной вызов, переадресация, конференция и другие.

Возможно использование адреса электронной почты в качестве публикуемого SIP-адреса. Применение URL позволяет, например, размещать свой адрес на Web-страницах:

sip: user1@rts.loniis.ru

sip: user1@ 195.201.37.104

Элементы SIP-сети.

Сеть SIP содержит следующие  основные элементы.

Агент пользователя (User Agent или SIP client) является приложением терминального оборудования и включает в себя две составляющие: клиент агента пользователя (User Agent Client - UAC) и сервер агента пользователя (User Agent Server - UAS), иначе называемые клиент и сервер. Клиент UAC инициирует SIP-запросы, т.е. выступает в качестве вызывающей стороны. Сервер UAS принимает запросы и отвечает на них, т.е. выступает в качестве вызываемой стороны.

Запросы могут передаваться не прямо адресату, а на некоторый промежуточный узел. Такие узлы бывают двух основных типов: прокси-сервер и сервер переадресации

Прокси-сервер (proxy server) принимает  запросы, обрабатывает их и отправляет дальше на следующий сервер, который  может быть как другим прокси-сервером, так и последним UAS. Таким образом, прокси-сервер принимает и отправляет запросы и клиента, и сервера. Приняв запрос от UAC, прокси-сервер действует от имени этого UAC.

Прокси-сервер может модифицировать запросы, которые он переправляет дальше. Проще говоря, пользователь отсылает требование установить соединение на прокси-сервер, а тот сам “заботится” о том, чтобы оно было установлено. Прокси-сервер может размножать запрос и передавать его по разным направлениям, чтобы запрос достиг нескольких мест, в надежде на то, что нужный пользователь окажется в одном из них.

Сервер переадресации (redirect server) передает клиенту в ответе на запрос адрес следующего сервера  или клиента, с которым первый клиент связывается затем непосредственно. Он не может инициировать собственные запросы. Адрес сообщается первому клиенту в поле Contact сообщений SIP. Таким образом, этот сервер просто выполняет функции поиска текущего адреса пользователя.

Пользователь может  перемещаться от одной оконечной  системы к другой, так что нужен  какой-то метод определения его местоположения. Для этого в SIP используется сервер местоположения (location server) - это база адресов, доступ к которой имеют SIP-серверы, пользующиеся ее услугами для получения информации о возможном местоположении вызываемого пользователя. Принципы работы сервера местоположения не регламентированы документом RFC 2543, но там имеются примеры протоколов, которые могут использоваться для этого LDAP (RFC 1777), rwnois (RFC 2167) и др. Упрощенно базу данных можно представить как совокупность адресных записей, в которых напротив “публикуемого” адреса пользователя его стоит текущий адрес. Приняв запрос, сервер SIP обращается к серверу местоположения, чтобы узнать адрес, по которому можно найти пользователя. В ответ тот сообщает либо список возможных адресов, либо информирует о невозможности найти их. С другой стороны, пользователь информирует SIP-сервер о своем местоположении сообщением REGISTER. Сервер местоположения может располагаться как совместно с SIP-сервером, где могут присутствовать некоторые элементы базы адресов, так и отдельно от него  
(рисунок 3).

Рисунок 3 – Обобщенная схема работы IP-телефонии

 

2.6 Механизмы оптимизации задержек в сети

 

Задержки пакетов в IP-сетях определяются:

  • случайной задержкой пакетов на обработку в транзитных маршрутизаторах;
  • датаграммным режимом передачи, приводящим к нарушению порядка следования пакетов и необходимости их сортировки на принимающей стороне.

В соответствии с этим существует несколько подходов к  оптимизации задержек с целью  обеспечения требуемого качества передачи.

Реализация первого  подхода предусматривает резервирование части пропускной способности сети для передачи пакетов с речевой информацией. Для того, чтобы более эффективно использовать зарезервированную полосу пропускания, на оконечном или шлюзовом оборудовании должна осуществляться предварительная концентрация речевой информации. При этом IP-пакеты должны формироваться не по мере поступления речевых сигналов, а с некоторой задержкой, достаточной для сборки информационного блока больших размеров. Передача речи в больших информационных блоках упрощает процедуру управления очередями на транзитных узлах, что очень существенно в связи с неразвитой системой приоритетов существующего протокола IP. Однако реализация этого подхода приводит к появлению дополнительной задержки.

Для резервирования полосы пропускания в сети IP может использоваться метод WFQ (Weighted Fair Queuing) или протокол RSVP.

Метод WFQ позволяет для  каждого вида трафика выделять определённую часть полосы пропускания. Оператор через систему административного управления может задать количество очередей (до 10 очередей для передачи данных и одну очередь для системных сообщений). В случае, если одна очередь не использует полностью выделенную ей полосу пропускания, то свободный резерв полосы пропускания может задействоваться для передачи информации из следующей очереди. Этот метод позволяет гибко использовать ресурсы сети и реализован в оборудовании фирмы Cisco.

Протокол RSVP предназначен только для резервирования части  пропускной способности. Механизм работы данного протокола описан выше. Недостатком протокола RSVP является то, что полоса пропускания, выделяемая источнику информации, при снижении активности источника не может быть использована для передачи другой информации. Как альтернатива этому способу может использоваться алгоритм управления потоками на основе системы приоритетов, однако в существующей версии IP этот механизм развит недостаточно.

Также одним из способов оптимизации задержки в сети является использование протокола RTCP (Real-Time Transport Control Protocol), который позволяет приложению реагировать на изменение состояния сети.

Третий подход предусматривает  построение магистральной транспортной сети Интернет на основе технологии Frame Relay или ATM. В этом случае пограничные узлы IP взаимодействуют друг с другом через виртуальные соединения сети Frame Relay или ATM, для которых гарантируются параметры качества обслуживания (скорость передачи, время и джиттер задержки). Использование Frame Relay или ATM позволяет отказаться от применения транзитных маршрутизаторов IP. При этом возможно более эффективное использование полосы пропускания за счёт установления соединения для каждого телефонного 
разговора.[9]

 

2.7 Показатели качества IP-телефонии.

 

Традиционные телефонные сети коммутируют электрические сигналы с гарантированной полосой пропускания, достаточной для передачи сигналов голосового спектра. При фиксированной пропускной способности передаваемого сигнала цена единицы времени связи зависит от удаленности и расположения точек вызова и места ответа.

IP-телефония является одной из областей передачи данных, где важна динамика передачи сигнала, которая обеспечивается современными методами кодирования и передачи информации, а также увеличением пропускной способности каналов, что приводит к возможности успешной конкуренции IP-телефонии с традиционными телефонными сетями.

Основными составляющими  качества IP-телефонии являются:

Информация о работе Анализ организованной сети обмена информацией между офисами ОАО «Тревожное зарево» и возможность внедрения технологии VoIP