Автор работы: Пользователь скрыл имя, 06 Января 2014 в 21:03, лекция
Системы управления базами данных (СУБД) – это специализированные программные продукты, позволяющие:
1) постоянно хранить сколь угодно большие (но не бесконечные) объемы данных;
2) извлекать и изменять эти хранящиеся данные в том или ином аспекте, используя при этом так называемые запросы;
Важно, что одному имени атрибута обязательно должно соответствовать не более одного значения атрибута.
В табличной форме записи отношения кортежем будет любая строка таблицы, т. е.:
Здесь t1(S) = {t(a1), t(a2), t(a3), t(a4)} и t2(S) = {t(a5), t(a6), t(a7), t(a8)} – кортежи.
Кортежи в СУБД различаются по типам в зависимости от своей области определения. Кортежи называются:
1) частичными, если их область определения включается или совпадает со схемой отношения, т. е. def(t) ⊆ S.
Это общий случай в практике баз данных;
2) полными, в том случае если их область определения полностью совпадает, равна схеме отношения, т. е. def(t) = S;
3) неполными, если область определения полностью включается в схему отношений, т. е. def(t) ⊂ S;
4) нигде не определенными, если их область определения равна пустому множеству, т. е. def(t) = ∅.
Поясним на примере. Пусть у нас имеется отношение, заданное следующей таблицей.
Пусть здесь t1 = {10, 20, 30}, t2 = {10, 20, Null}, t3 = {Null, Null, Null}. Тогда легко заметить, что кортеж t1 – полный, так как его область определения def(t1) = { a, b, c} = S.
Кортеж t2 – неполный, def(t2) = { a, b} ⊂ S. И, наконец, кортеж t3 – нигде не определенный, так как его def(t3) = ∅.
Надо заметить, что нигде не определенный кортеж – это пустое множество, тем не менее ассоциируемое со схемой отношений. Иногда нигде не определенный кортеж обозначается: ∅(S). Как мы уже видели в приведенном примере, такой кортеж представляет собой строку таблицы, состоящую только из Null-значений.
Интересно, что сравнимыми , т. е. возможно равными, являются только кортежи с одной и той же схемой отношений. Поэтому, например, два нигде не определенных кортежа с различными схемами отношений не будут равными, как могло ожидаться. Они будут различными так же, как их схемы отношений.
И наконец дадим определение отношению, как некой вершине пирамиды, состоящей из всех предыдущих понятий. Итак, отношение (обозначается r , от англ. relation – «отношение») со схемой отношений S определяется как обязательно конечное множество кортежей, имеющих ту же схему отношения S. Таким образом:
r ≡ r(S) = {t(S) | t ∈r};
По аналогии со схемами отношений количество кортежей в отношении называют мощностью отношений и обозначают как мощность множества: |r |.
Отношения, как и кортежи, различаются по типам. Итак, отношения называются:
1) частичными , если для любого входящего в отношение кортежа выполняется следующее условие: [def(t) ⊆ S].
Это (как и с кортежами) общий случай;
2) полными , в том случае если ∀ t ∈ r(S) выполняется: [def(t) = S];
3) неполными , если ∃t ∈ r(S) def(t) ⊂ S;
4) нигде не определенными , если ∀t ∈ r(S) [def(t) = ∅].
Обратим отдельное внимание на нигде не определенные отношения. В отличие от кортежей работа с такими отношениями включает в себя небольшую тонкость. Дело в том, что нигде не определенные отношения могут быть двух видов: они могут быть либо пустыми, либо могут содержать единственный нигде не определенный кортеж (такие отношения обозначаются {∅(S)}).
Сравнимыми (по аналогии с кортежами), т. е., возможно равными, являются лишь отношения с одной и той же схемой отношения. Поэтому отношения с различными схемами отношений являются различными.
В табличной форме представления, отношение – это тело таблицы, которому соответствует строка – заголовок столбцов, т. е. буквально – вся таблица, вместе с первой строкой, содержащей заголовки.
Реляционная алгебра, как нетрудно догадаться, – это особая разновидность алгебры, в которой все операции производятся над реляционными моделями данных, т. е. над отношениями.
В табличных терминах отношение включает в себя строки, столбцы и строку – заголовок столбцов. Поэтому естественными унарными операциями являются операции выбора определенных строк или столбцов, а также смены заголовков столбцов – переименования атрибутов.
Первой унарной операцией, которую мы рассмотрим, является операция выборки – операция выбора строк из таблицы, представляющей отношение, по какому-либо принципу, т. е. выбор строк-кортежей, удовлетворяющих определенному условию или условиям.
Оператор выборки обозначается σ <P >, условие выборки – P <S >, т. е., оператор σ берется всегда с определенным условием на кортежи P , а само условие P записывается зависящим от схемы отношения S . С учетом всего этого сама операция выборки над схемой отношения S применительно к отношению r будет выглядеть следующим образом:
σ <P >r (S ) ≡ σ <P >r = {t (S ) |t ∈ r & P <S >t } = {t (S ) |t ∈ r & IfNull (P <S >t , False };
Результатом этой операции будет новое отношение с той же схемой отношения S , состоящее из тех кортежей t (S ) исходного отношения-операнда, которые удовлетворяют условию выборки P<S>t . Понятно, что для того, чтобы применить какое-то условие к кортежу, необходимо подставить значения атрибутов кортежа вместо имен атрибутов.
Чтобы лучше понять принцип работы этой операции, приведем пример. Пусть дана следующая схема отношения:
S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка).
Условие выборки возьмем такое:
P <S > = (Предмет = ‘Информатика’ and Оценка > 3).
Нам необходимо из исходного отношения-операнда выделить те кортежи, в которых содержится информация о студентах, сдавших предмет «Информатика» не ниже, чем на три балла.
Пусть также дан следующий кортеж из этого отношения:
t 0(S ) ∈ r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Применяем наше условие выборки к кортежу t 0, получаем:
P<S>t 0 = (‘Базы данных’ = ‘Информатика’ and 5 > 3);
На данном конкретном кортеже условие выборки не выполняется.
А вообще результатом этой конкретной выборки
σ <Предмет = 'Информатика' and Оценка > 3 > Сессия
будет таблица «Сессия», в которой оставлены строки, удовлетворяющие условию выборки.
Еще одна стандартная унарная операция, которую мы изучим, – это операция проекции. Операция проекции – это операция выбора столбцов из таблицы, представляющей отношение, по какому-либо признаку. А именно машина выбирает те атрибуты (т. е. буквально те столбцы) исходного отношения-операнда, которые были указаны в проекции.
Оператор проекции обозначается [S' ] или π<S'> . Здесь S' – подсхема исходной схемы отношения S , т. е. ее некоторые столбцы. Что это означает? Это означает, что у S’ атрибутов меньше, чем у S , потому что в S' остались только те из них, для которых выполнилось условие проекции. А в таблице, представляющей отношение r (S' ), строк столько же, сколько их у таблицы r (S ), а столбцов – меньше, так как остались только соответствующие оставшимся атрибутам. Таким образом, оператор проекции π< S'> применительно к отношению r (S ) дает в результате новое отношение с другой схемой отношения r (S' ), состоящее из проекций t (S ) [S' ] кортежей исходного отношения. Как определяются эти проекции кортежей? Проекция любого кортежа t (S ) исходного отношения r (S ) на подсхему S' определяется следующей формулой:
t (S ) [S’ ] = {t (a )|a ∈ def (t ) ∩ S ’}, S ' ⊆S .
Важно заметить, что дубликаты кортежей из результата исключаются, т. е. в таблице, представляющей новое, результирующее отношение повторяющихся строк не будет.
С учетом всего вышесказанного, операция проекции в терминах систем управления базами данных будет выглядеть следующим образом:
π <S' >r (S ) ≡ π <S’ >r ≡ r (S ) [S ’] ≡ r [S' ] = {t (S ) [S’ ] | t ∈ r };
Рассмотрим пример, иллюстрирующий принцип работы операции выборки.
Пусть дано отношение «Сессия» и схема этого отношения:
S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);
Нас будут интересовать только два атрибута из этой схемы, а именно «№ зачетной книжки» и «Фамилия» студента, поэтому подсхема S' будет выглядеть следующим образом:
S' : (№ зачетной книжки, Фамилия).
Нужно исходное отношение r (S ) спроецировать на подсхему S' .
Далее, пусть нам дан кортеж t 0(S ) из исходного отношения:
t 0(S ) ∈ r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Значит, проекция этого кортежа на данную подсхему S' будет выглядеть следующим образом:
t 0(S ) S' : {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’)};
Если говорить об операции проекции в терминах таблиц, то проекция Сессия [№ зачетной книжки, Фамилия] исходного отношения – это таблица Сессия, из которой вычеркнуты все столбцы, кроме двух: № зачетной книжки и Фамилия. Кроме того, все дублирующиеся строки также удалены.
И последняя унарная операция, которую мы рассмотрим, – это операция переименования атрибутов . Если говорить об отношении как о таблице, то операция переименования нужна для того, чтобы поменять названия всех или некоторых столбцов.
Оператор переименования выглядит следующим образом: ρ<φ >, здесь φ – функция переименования .
Эта функция устанавливает взаимно-однозначное соответствие между именами атрибутов схем S и Ŝ, где соответственно S – схема исходного отношения, а Ŝ – схема отношения с переименованными атрибутами. Таким образом, оператор ρ <φ> в применении к отношению r (S ) дает новое отношение со схемой Ŝ , состоящее из кортежей исходного отношения только с переименованными атрибутами.
Запишем операцию переименования атрибутов в терминах систем управления базами данных:
ρ <φ > r (S ) ≡ ρ <φ >r = {ρ <φ > t (S )| t ∈ r };
Приведем пример использования этой операции:
Рассмотрим уже знакомое нам отношение Сессия, со схемой:
S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);
Введем новую схему отношения Ŝ, с другими именами атрибутов, которые мы бы хотели видеть вместо имеющихся:
Ŝ : (№ ЗК, Фамилия, Предмет, Балл);
Например, заказчик базы данных
захотел в вашем готовом
φ : (№ зачетной книжки, Фамилия, Предмет, Оценка) → (№ ЗК, Фамилия, Предмет, Балл);
Фактически, требуется поменять имя только у двух атрибутов, поэтому законно будет записать следующую функцию переименования вместо имеющейся:
φ : (№ зачетной книжки, Оценка) → (№ ЗК, Балл);
Далее, пусть дан также уже знакомый нам кортеж принадлежащий отношению Сессия:
t 0(S ) ∈ r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Применим оператор переименования к этому кортежу:
ρ<φ> t 0(S ): {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};
Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.
В табличных терминах отношение
ρ < № зачетной книжки, Оценка → «№ ЗК, Балл > Сессия –
это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.
У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.
Первым свойством унарных
операций выборки, проекции и переименования
является свойство, характеризующее
соотношение мощностей
Заметим, что все свойства
унарных операций следуют непосредственно
из их определений, поэтому их можно
легко объяснить и даже при
желании вывести
Итак:
1) соотношение мощностей:
а) для операции выборки: | σ <P >r |≤ |r |;
б) для операции проекции: | r [S' ] | ≤ |r |;
в) для операции переименования: | ρ <φ >r | = |r |;
Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.
В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;
2) свойство идемпотентности:
а) для операции выборки: σ <P > σ <P >r = σ <P >;
б) для операции проекции: r [S’ ] [S’ ] = r [S' ];
в) для операции переименования в общем случае свойство идемпотентности неприменимо.
Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.
Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.
Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.