Базовые определения и основные модели систем

Автор работы: Пользователь скрыл имя, 24 Июня 2014 в 18:35, реферат

Описание работы

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

Файлы: 1 файл

основы системного анализа..docx

— 57.57 Кб (Скачать файл)

Оглавление

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Еще в первой половине XX века масштабы и характер воздействия человека на природу были таковы, что между возможностями, которые заключали в себе эти условия, и их реальным использованием существовал внушительный интервал. Однако сейчас положение изменилось самым решительным образом. Мощь природы не только перестала казаться бесконечной, но во многих отношениях уже сейчас требует от общества специальных усилий, направленных на ее поддержание, и даже восстановление. Кроме того, сознательно регулируемым предметом деятельности становится сама деятельность человека: иначе говоря, резко усиливается воздействие человека на всю систему социальных отношений, а вместе с тем возрастает социальное знание поставляющего инструментальные и иные средства для такого воздействия.

Эти причины явились предпосылками возникновения общей теории систем, которая оформилась как самостоятельная дисциплина в 40х-50х годах ХХ века и призвана помочь человечеству в преодолении недостатков узкой специализации, усилении междисциплинарных связей, развитии диалектического видения мира, системного мышления.

Системный анализ со временем стал меж- и наддисциплинарным курсом, обобщающий методологию исследования сложных технических и социальных систем.

С ростом населения на планете, ускорением научно-технического прогресса, угрозой голода, безработицы и различных экологических катастроф, становится все более важным применение системного анализа.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

 

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

 

Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Базовые определения и основные модели систем

Многообразие и возрастающий объем задач хозяйственного строительства требует их взаимной увязки, обеспечения общей целенаправленности. Но этого трудно достичь, если не учитывать сложной зависимости между отдельными регионами страны, между различными отраслями промышленности, между всеми сферами общественной жизни. Например, 40% информации специалисту необходимо получать из смежных областей, часто весьма отдаленных. Развитие узкоспециальных дисциплин часто стало выходить на обобщающий уровень. Появилась потребность в специалистах «широкого профиля», обладающих знаниями не только в своей области, но и в смежных областях и умеющих эти знания обобщать, использовать аналогии, формировать комплексные модели. Поэтому, наряду с аналитическими методами, эффективными при изучении частных процессов, нужен подход, принцип, который помог бы разобраться в логических связях между отдельными разнородными фактами. Такой принцип получил название системного подхода.

Обобщающее научное направление, названное теорией систем, возникло в 1940-50 годы. Австрийский биолог и философ Л. фон Берталанфи, считающийся основоположником этого направления, обобщил идеи, содержащиеся в теории открытых систем, и выдвинул программу общей теории систем. Общая теория систем в широком смысле (по Берталанфи) – фундаментальная наука, охватывающая всю совокупность проблем, связанных с исследованием и конструированием систем. Состав общей теории систем приведен на рис. 1.1.

Системные исследования – вся совокупность научных и технических проблем, которые при всей их специфике и разнообразии сходны в понимании и рассмотрении исследуемых ими объектов как систем, т.е. множества взаимосвязанных элементов, выступающих в виде единого целого. Наиболее конструктивным из прикладных направлений системных исследований в настоящее время считается системный анализ.

Системный анализ – методология трудно наблюдаемых и трудно понимаемых свойств и отношений в объектах с помощью представления этих объектов в качестве целенаправленных систем и изучения свойств этих систем и взаимоотношений между целями и средствами их реализации.

Это определение позволяет отличить методы системного анализа от других методов исследования и относит его к определенной области научных знаний. Почти все методы исследования исходят из четко сформулированной заранее задачи. Системный анализ решает вопросы, как правильно ставить задачи, какие методы исследования использовать. Главное в системном анализе – как сложное превратить в простое, как не только трудноразрешимую, но и труднопонимаемую проблему превратить в четкую серию задач, имеющих метод решения.

Центральной концепцией теории систем, системного подхода, всей системологии является понятие системы. В настоящее время нет единства в определении понятия «система», в подходах к классификации систем, в трактовке основных системных закономерностей. Определение понятия «система» изменялось не только по форме, но и по содержанию.

Первое определение системы. Система как средство достижения цели

Рассмотрим искусственную, то есть создаваемую человеком систему. Цели, которые ставит перед собой человек, редко достижимы только за счет его собственных возможностей или внешних средств, имеющихся у него на данный момент. Такое стечение обстоятельств называется проблемной ситуацией. Проблемность существующего положения осознается в несколько «стадий»: от смутного ощущения, что «что-то не так», к осознанию потребности, затем к выявлению проблемы и, наконец, к формулировке цели. Цель – это субъективный образ (абстрактная модель) несуществующего, но желаемого состояния среды, которое решило бы возникшую проблему. Вся последующая деятельность, способствующая решению этой проблемы, направлена на достижение поставленной цели, то есть это работа по созданию того, что мы будем называть системой. Другими словами, система есть средство достижения цели. Это и есть первое определение системы.Первое определение (искусственной) системы («средство достижения цели») выдвигает на первый план целевую подчиненность всех сторон организации системы.

Однако даже на простых примерах обнаруживаются сложности: соответствие между целями и системами не всегда однозначно (одна система может быть связана с несколькими целями, одной цели могут отвечать разные системы) и не всегда очевидно (выявить действительные цели существующей системы) не просто. Тем не менее целевая предназначенность системы – ее исходное, главное свойство.

Модель «черного ящика»

В определении системы, приведенном в предыдущем пункте, сделан акцент на назначении системы, а об ее устройстве говорится лишь косвенно. Перейдем от первого определения системы к его визуальному эквиваленту. Во-первых, данное определение ничего не говорит о внутреннем устройстве системы. Поэтому изобразим ее в виде непрозрачного «ящика», выделенного из окружающей среды. Эта модель отражает два важных свойства системы – целостность и обособленность от среды. Во-вторых, в определении системы косвенно говорится о том, что хотя «ящик» и обособлен, выделен из среды, но не является полностью от нее изолированным. Иначе говоря, система связана со средой и с помощью этих связей воздействует на среду. В-третьих, в определении имеется указание на то, что система является средством, поэтому должны существовать и возможности ее использования, воздействия на нее. Они называются входами системы. Название «черный ящик» образно подчеркивает полное отсутствие сведений о внутреннем содержании системы. В этой модели задаются только входные и выходные связи системы со средой. Простота данной модели – перечисление лишь входов и выходов системы обманчива. Как только это потребуется для конкретной реальной системы, мы сталкиваемся с трудностями.

Главной причиной множественности входов и выходов в модели «черного ящика» является то, что всякая реальная система взаимодействует с объектами окружающей среды неограниченным числом способов. Всегда существует опасность неполноты составления перечня входов и выходов как вследствие того, что важные из них могут быть сочтены несущественными, так и в силу неизвестности некоторых из них на момент построения модели.

Модель состава системы

Очевидно, что вопросы, касающиеся внутреннего устройства системы, невозможно решить только с помощью модели «черного ящика». Для этого необходимы более развитые, более детальные модели. При рассмотрении любой системы, прежде всего, обнаруживается то, что ее целостность и обособленность, отображенные в модели «черного ящика», выступают как внешние свойства. Внутренность же «ящика» оказывается неоднородной, что позволяет различать составные части самой системы. При более детальном рассмотрении некоторые части системы могут быть в свою очередь разбиты на составные части и т.д., те части системы, которые рассматриваются как неделимые, будут называться элементами. Части системы, состоящие более чем из одного элемента, называются подсистемами. В результате получается модель состава системы, описывающая, из каких подсистем и элементов она состоит. Модель состава системы отображает, из каких частей (подсистем и элементов) состоит система. Главная трудность в построении модели состава заключается в том, что разделение целостной системы на части является относительным, условным, зависящим от целей моделирования (это относится не только к границам между частями системы, но и к границам самой системы). Кроме того, относительным является и определение самой малой части – элемента.

Модель структуры системы

Для достижения многих практических целей достаточно модели «черного ящика» или модели состава. Однако, очевидно, есть вопросы, решить которые с помощью этих моделей нельзя. Например, чтобы получить велосипед, недостаточно иметь «ящик» со всеми отдельными его деталями. Необходимо еще правильно соединить все детали между собой, то есть установить между элементами определенные связи – отношения. Совокупность необходимых и достаточных для достижения цели отношений между элементами называется структурой системы. Отношения между элементами могут быть самыми разнообразными. Однако можно попытаться их классифицировать и по возможности перечислить. Трудность состоит в том, что мы знаем не все реально существующие отношения и вообще неизвестно, является ли конечным их число. Говоря, что свойства какого-то объекта можно использовать в системе, мы имеем в виду установление некоторых отношений между данным объектом и другими частями системы, то есть включение этих отношений в структуру системы. Модель структуры системы отображает связи между компонентами модели ее состава, то есть совокупность связанных между собой моделей «черного ящика» для каждой из частей системы. Поэтому трудности построения модели структуры те же, что и для построения модели «черного ящика».

Динамические модели систем

Системы, в которых происходят какие бы то ни было изменения, называют динамическими, а модели, отображающие эти изменения, − динамическими моделями систем.

Различают два типа динамики системы: ее функционирование и развитие. Под функционированием подразумевают процессы, которые происходят в системе (и окружающей ее среде), стабильно реализующей фиксированную цель. Развитием называют то, что происходит с системой при изменении ее целей. Характерной чертой развития является тот факт, что существующая структура перестает соответствовать новой цели, и для обеспечения новой функции приходится изменять структуру, а иногда и состав системы

С помощью динамических моделей осуществляется отображение процессов, происходящих в системе и в окружающей среде. Всякая реальная динамическая система подчинена принципу причинности: отклик (выходной сигнал) не может появиться раньше входного воздействия. Условия, при которых модель отражает этот принцип, называются условиями физической реализуемости модели.

 

Понятия, характеризующие строение и функционирование систем

Рассмотрим ниже понятия, с помощью которых уточняют представление о системе и характеризуют ее строение и функционирование.

Элемент. Под элементом понимают простейшую неделимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от аспекта его изучения. Таким образом, элемент – это предел членения системы с точки зрения решения конкретной задачи или поставленной цели.

Поскольку элемент выступает как своеобразный предел возможного членения объекта, собственное его строение (или состав) обычно не принимается во внимание в характеристике системы: составляющие элементы уже не рассматриваются как компоненты данной системы.

 

Подсистема. Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, которые представляют собой компоненты более крупные, чем элементы, и в тоже время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычленением совокупностей взаимосвязанных элементов, способных выполнять относительно независимые функции, подцели, направленные на достижение общей цели системы. Названием подсистема подчеркивается, что такая часть должна обладать свойствами системы, в частности свойством целостности.

Структура. Если для решения задачи оказывается достаточным определить элементы и связи, которых относительно немного, то других понятий, характеризующих строение и функционирование систем, не требуется. Однако, как правило, элементов оказывается очень много, они неоднородны и возникает необходимость многоступенчатого расчленения системы.

Информация о работе Базовые определения и основные модели систем