Геоинформационные системы и технологии автоматизированного проектирования в землеустройстве

Автор работы: Пользователь скрыл имя, 19 Января 2014 в 13:01, курсовая работа

Описание работы

Развитие современного землеустройства определяется методами и средствами исследований, совершенствующихся в настоящее время, особенно в связи с использованием системного подхода, развитием математической картографии, вычислительной техники и компьютерных технологий.

Содержание работы

Введение…………………………………………………………………….………..3
1. Понятие о географических информационных системах, их классификация, применение в землеустройстве
1.1. Понятие о географических информационных системах………………4
1.2. Задачи ГИС……………………………………………………………….5
1.3. Возможности ГИС………………………………………………….……6
1.4. Классификация ГИС……………………………………………………..6
1.5. Области применения ГИС………………………………………………7
1.6. ГИС в землеустройстве…………………………………….….……….10
2. Формирование цифровой модели землепользования на основе применения инструментальной ГИС «MapInfo»
2.1. Отличительные особенности ГИС MapInfo……………...…………...14
2.2. Подготовка исходной информации и ее цифрование……………......15
2.3. Формирование графической базы данных слоев информации……...16
Заключение………………………………………………………………………….21
Приложения………………...……………………………….……………………...22

Файлы: 1 файл

ГИС_РГР2.doc

— 491.50 Кб (Скачать файл)

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ     

  УНИВЕРСИТЕТ

Факультет Магистерской подготовки

Кафедра мелиорации, землеустройства  и   земельных кадастров»

 

 

 

 

 

 

Курсовая работа

по дисциплине «Информационные компьютерные технологии»

на тему: «Геоинформационные системы и технологии автоматизированного     проектирования в землеустройстве».

 

 

 

                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

Введение…………………………………………………………………….………..3

1. Понятие о географических информационных системах, их классификация, применение в землеустройстве

1.1. Понятие о географических информационных системах………………4

1.2. Задачи ГИС……………………………………………………………….5

1.3.  Возможности ГИС………………………………………………….……6

1.4. Классификация ГИС……………………………………………………..6

1.5.  Области применения ГИС………………………………………………7

1.6.  ГИС в землеустройстве…………………………………….….……….10

2. Формирование цифровой модели землепользования на основе применения инструментальной ГИС «MapInfo»

2.1.  Отличительные особенности ГИС MapInfo……………...…………...14

2.2. Подготовка исходной информации и ее цифрование……………......15

2.3.  Формирование графической базы данных слоев информации……...16

Заключение………………………………………………………………………….21

Приложения………………...……………………………….……………………...22

 

 

Введение

Необходимость управления земельными ресурсами в складывающихся социально-экономических условиях требует широкого применения принципов  формирования и организации исследований и проектного дела, а также создания единого информационного поля в землеустроительной отрасли.

Развитие современного землеустройства определяется методами и средствами исследований, совершенствующихся в настоящее время, особенно в связи с использованием системного подхода, развитием математической картографии, вычислительной техники и компьютерных технологий.

Землеустройство неразрывно связано с новой прогрессивной  сферой исследований - геоинформатикой, возникшей на стыке картографии, информатики, географии, математики, и др. наук.

Задачи геоинформации  выходят за рамки картографии, делая  ее основой для интеграции различных  дисциплин из разных областей знаний для комплексных системных исследований. 

 

1. Понятие о географических информационных системах, их классификация, применение в землеустройстве

    1. Понятие о географических информационных системах

Геоинформационные системы (также ГИС — географическая информационная система) — системы, предназначенные для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Другими словами, это инструменты, позволяющие пользователям искать, анализировать и редактировать цифровые карты, а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.

ГИС включают в себя возможности СУБД, редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне.

По территориальному охвату различают:

  1. глобальные ГИС (global GIS);
  2. субконтинентальные ГИС;
  3. национальные ГИС ( государственных);
  4. региональные ГИС (regional GIS);
  5. субрегиональные ГИС;
  6. локальные или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС , природоохранные ГИС).Среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые  ГИС основаны на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС оперируют пространственно-временными данными. Реализация геоинформационных проектов , создание ГИС в широком смысле слова, включает этапы: предпроектных исследований , в том числе изучение требований пользователя и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» ; системное проектирование ГИС, включая стадию пилот-проекта , разработку ГИС; её тестирование на небольшом территориальном фрагменте, или тестовом участке, прототипирование, или создание опытного образца, или прототипа; внедрение ГИС; эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

1.2. Задачи ГИС

  • Ввод данных. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат (оцифрованы). В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера.
  • Манипулирование данными (например, масштабирование).
  • Управление данными. В небольших проектах географическая информация может храниться в виде обычных файлов, а при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными применяются СУБД.
  • Запрос и анализ данных — получение ответов на различные вопросы (например, кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промышленная зона? Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?).
  • Визуализация данных. Например, представление данных в виде карты или графика.

1.3. Возможности ГИС

ГИС включают в себя возможности СУБД, редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне. ГИС позволяют решать широкий спектр задач — будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.

ГИС-система позволяет:

  • определить какие объекты располагаются на заданной территории;
  • определить местоположение объекта (пространственный анализ);
  • определить временные изменения на определенной площади);
  • смоделировать, что произойдет при внесении изменений в расположение объектов (например, если добавить новую дорогу).

 

1.4. Классификация ГИС

По территориальному охвату:

  • глобальные ГИС;
  • субконтинентальные ГИС;
  • национальные ГИС;
  • региональные ГИС;
  • субрегиональные ГИС;
  • локальные или местные ГИС.

По уровню управления:

  • федеральные ГИС;
  • региональные ГИС;
  • муниципальные ГИС;
  • корпоративные ГИС.

По функциональности:

  • полнофункциональные;
  • ГИС для просмотра данных;
  • ГИС для ввода и обработки данных;
  • специализированные ГИС.

По предметной области:

  • картографические;
  • геологические;
  • городские или муниципальные ГИС;
  • природоохранные ГИС и т. п.

Если помимо функциональных возможностей ГИС в системе присутствуют возможности цифровой обработки изображений, то такие системы называются интегрированными ГИС (ИГИС). Полимасштабные, или масштабно-независимые ГИС основаны на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС оперируют пространственно-временными данными.

1.5. Области применения ГИС

  • Управление земельными ресурсами, земельные кадастры. Для решения проблем именно этой области и начали создавать ГИС. Типичные задачи — составление кадастров, классификационных карт, определение площадей участков и границ между ними и т. д.
  • Инвентаризация, учет, планирование размещения объектов распределенной производственной инфраструктуры и управление ими. Например, нефтегазодобывающие компании или компании, управляющие энергетической сетью, системой бензоколонок, магазинов и т. п.
  • Проектирование, инженерные изыскания, планировка в строительстве, архитектуре. Такие ГИС позволяют решать полный комплекс задач по развитию территории, оптимизации инфраструктуры строящегося района, требующегося количества техники, сил и средств.
  • Тематическое картографирование.
  • Управление наземным, воздушным и водным транспортом. ГИС позволяет решать задачи управления движущимися объектами при условии выполнения заданной системы отношений между ними и неподвижными объектами. В любой момент можно узнать, где находится транспортное средство, рассчитать загрузку, оптимальную траекторию движения, время прибытия и т. п.
  • Управление природными ресурсами, природоохранная деятельность и экология. ГИС помогает определить текущее состояние и запасы наблюдаемых ресурсов, моделирует процессы в природной среде, осуществляет экологический мониторинг местности.
  • Геология, минерально-сырьевые ресурсы, горнодобывающая промышленность. ГИС осуществляет расчеты запасов полезных ископаемых по результатам проб (разведочное бурение, пробные шурфы) при известной модели процесса образования месторождения.
  • Чрезвычайные ситуации. С помощью ГИС производится прогнозирование чрезвычайных ситуаций (пожаров, наводнений, землетрясений, селей, ураганов), расчет степени потенциальной опасности и принятие решений об оказании помощи, расчет требуемого количества сил и средств для ликвидации чрезвычайных ситуаций, расчет оптимальных маршрутов движения к месту бедствия, оценка нанесенного ущерба.
  • Военное дело. Решение широкого круга специфических задач, связанных с расчетом зон видимости, оптимальных маршрутов движения по пересеченной местности с учетом противодействия и т. п.
  • Сельское хозяйство. Прогнозирование урожайности и увеличения производства сельскохозяйственной продукции, оптимизация ее транспортировки и сбыта.

ГИС-система включает в себя пять ключевых составляющих:

  • аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров;
  • программное обеспечение. Содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической информации. К таким программным продуктам относятся: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации;
  • данные. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных;
  • исполнители. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники, которым ГИС помогает решать текущие каждодневные дела и проблемы;

 

1.6. ГИС в землеустройстве

В настоящее время основным способом повышения качества и эффективности землеустройства стала его автоматизация на основе компьютерных технологий. Современные технологии и соответствующее программное и аппаратное обеспечение позволяют обрабатывать большие объёмы информации, повысить её точность, наглядность и достоверность, получать наиболее эффективные проектные решения, изготавливать качественную землеустроительную документацию.

Среди компьютерных технологий в землеустройстве  центральное место занимают ГИС.

Основное назначение ГИС в землеустройстве - это создание цифровых карт и планов местности, являющихся плановой основой современного землеустройства.

Создаваемые в ГИС цифровые карты  и планы обладают рядом преимуществ перед картами и планами, созданными традиционными методами:

  • автоматизацией получения географической информации (положение на местности, метрические характеристики и др.) о пространственных объектах, возможность её экспорта в другие программы для последующего анализа;
  • точность географической информации полученной на цифровой карте соответствует точности исходного материала вне зависимости от  квалификации, опыта и аккуратности проектировщика, погрешностей средств измерения (планиметров, линеек, транспортиров), деформации бумаги;
  • возможностью быстрой корректировки и обновления содержимого;
  • занимают мало места (в основном не более 1 диска CD-R), возможно распространение через Internet;
  • возможностью пространственного анализа в ГИС (например, определить кратчайший путь между объектами);
  • наглядностью (с помощью стандартного 17" монитора можно детально рассмотреть содержимое плана занимающего целую комнату);
  • возможностью автоматического создания картограмм (соотносить статистические данные с объектами на плане и передавать их в графическом виде (например, картограмма качества земель));
  • возможностью поиска объектов по их местоположению или по записи в базе данных (БД);
  • ЦК может быть напечатана на бумажном носителе, а вот процесс преобразования содержимого бумажной карты в цифровой вид, требует значительных трудозатрат и последовательного выполнения ряда операций.

Информация о работе Геоинформационные системы и технологии автоматизированного проектирования в землеустройстве