Автор работы: Пользователь скрыл имя, 17 Июня 2015 в 19:26, реферат
Информационные технологии - это машинизированные способы обработки, хранения, передачи и использование информации в виде знаний. Они включают два основных элемента - машинный и человеческий (социальный), причём последний выступает главным.
Понятие технологии вообще включает комплекс научных и инженерных знаний, воплощенных в приемах труда, наборах материальных, технических, энергических, трудовых факторов производства, способов их соединения для создания продукта или услуги, отвечающих определенным требованием, стандартам. В таком понимании термин технология неразрывно связан машинизацией производственного или непроизводственного (социального) процесса. Информатики не могло быть в домашний период обработки и представления знаний, когда не было информационных технологий. Переработка информации с помощью ЭВМ и выработка новых знаний, соотнесенных с целями пользователей, - функциональное назначение информационных технологий.
Введение
1. Применение информационных технологий в медико-профилактическом деле
2. Медико-профилактические компьютерные системы
3. Системы для проведения мониторинга в медико-профилактическом деле
4. Пути развития медицинских информационных технологий
Заключение
Список литературы
Однако использование нейронных сетей для задач медицинской диагностики связано также с рядом серьезных трудностей. К ним следует отнести необходимость относительно большого объема выборки для настройки сети, ориентированность математического аппарата на количественные переменные.
3. Системы для проведения
мониторинга в медико-
Задача оперативной оценки состояния пациента возникает в ряде весьма важных практических направлений в медицине и в первую очередь при непрерывном наблюдении за больным в палатах интенсивной терапии, операционных и послеоперационных отделениях.
В этом случае требуется на основании длительного и непрерывного анализа большого объема данных, характеризующих состояние физиологических систем организма обеспечить не только оперативную диагностику осложнений при лечении, но и прогнозирование состояние пациента, а также определить оптимальную коррекцию возникающих нарушений. Для решения этой задачи предназначены мониторные МПКС. К числу наиболее часто используемых при мониторинге параметров относятся: электрокардиограмма, давление крови в различных точках, частота дыхания, температурная кривая, содержание газов крови, минутный объем кровообращения, содержание газов в выдыхаемом воздухе.
Аппаратное обеспечение мониторных систем и аналогичных систем для функциональной диагностики принципиально практически не отличается. Важной особенностью мониторных систем является наличие средств экспресс-анализа и визуализации их результатов в режиме реального времени. Это позволяет отображать на экране монитора также динамику различных производных от контролируемых величин. Все это осуществляется в различных временных масштабах. Причем чем выше качество системы, тем больше возможностей наблюдения динамики контролируемых и связанных с ними показателей она предоставляет. Чаще всего мониторные системы используются для одновременного слежения за состоянием от одного до 6 больных, причем у каждого из них может изучаться до 16 основных физиологических параметров.
К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.
В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.
Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.
К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.
Замкнутые системы интенсивной терапии структурно являются более сложными МПКС, так как они объединяют в себе задачи мониторинга, оценки состояния больного и выработки управляющих лечебных воздействий. Поэтому на практике замкнутые системы интенсивной терапии создаются только для очень частных, строго фиксированных задач.
Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий.
4. Пути развития медицинских информационных технологий
Медицинские информационные технологии включают в себя средства воздействия на организм внешними информационными факторами, описание способов и методов их применения и процесс обучения навыкам практической деятельности. Соответственно дальнейшее развитие этих технологий требует рассмотрения и решения следующих практических вопросов. На первом месте стоит насущный вопрос о необходимости широкого внедрения в клиническую практику апробированных средств и методов информационного воздействия, отвечающих таким требованиям, как безопасность и простота их использования, высокая терапевтическая эффективность их применения. Следующим актуальным вопросом является стимулирование и поощрение разработки и создания новых средств и методов воздействия на организм человека, соответствующих принципам и постулатам информационной медицины. Дальнейшее развитие и совершенствование данной области медицины связано с оптимизацией средств и методов обратной биологической связи при информационном воздействии, адекватных изменениям в организме в соответствии с принципами и постулатами информационной медицины.
Один из главных путей решения ряда медицинских, социальных и экономических проблем в настоящее время представляет информатизация работы медицинского персонала. К этим проблемам относиться поиска действенных инструментов, способных обеспечить повышение трех важнейших показателей здравоохранения: качества лечения, уровня безопасности пациентов, экономической эффективности медицинской помощи. Базовым звеном информатизации является использование в больницах современных клинических информационных систем, снабженных механизмами поддержки принятия решений. Однако эти системы не получили широкого распространения, так как пока не разработаны научные и методологические подходы к созданию клинических информационных систем.
По мнению большинства экспертов, прогнозирующих развитие науки и техники, 21 век это «век коммуникаций», что подразумевает повсеместное использование глобальных информационных систем. Использование таких систем в медицине открывает качественно новые возможности:
- обеспечение взаимодействия
региональных клиник с
- оперативное получение результатов последних научных исследований
- подготовка и переподготовка кадров.
Перечисленные возможности можно охарактеризовать одним общим понятием – телемедицина.
Телемедицина - это комплекс современных лечебно-диагностических методик, предусматривающих дистанционное управление медицинской информацией.
Возникновение телемедицины обычно связывают с врачебным контролем при космических полетах. Первоначально это было измерение показателей жизнедеятельности у животных на космических аппаратах, затем у космонавтов.
С появлением сетевых технологий телемедицина получила мощный импульс в своем развитии. Конкретной причиной прорыва телемедицины в практику послужило бурное развитие коммуникационных сетей, а также методов работы с информацией, позволивших обеспечить двух- и многосторонний обмен видео- и аудиоинформацией и любой сопроводительной документацией.
Простейшим случаем реализации возможностей телемедицины является быстрый доступ врача к необходимой справочной информации.
Основным приложением телемедицины является обслуживание тех групп населения, которые оказались вдали от медицинских центров или имеют ограниченный доступ к медицинским службам.
Другим важным объектом телемедицины является система диагностических центров регионов, когда необходима оперативная связь между лечащим врачом и врачом-диагностом, которые оказываются в разных лечебных учреждениях, часто разнесенных на большие расстояния.
Еще одним важным направлением телемедицины является скоропомощная ситуация и сложные случаи, когда требуется срочная консультация специалистов из центральных медучреждений для спасения больного или определения тактики лечения в сложных ситуациях, в том числе в крупнейших мировых медицинских центрах.
Следующим направлением является также дистанционное медицинское образование.
Наиболее перспективные тенденции в создании современных информационных систем можно объединить понятием «архитектура, обусловленная моделированием»(MDA) Философия этого подхода заключается в том, что в сложной системе невозможно предусмотреть все возможные сценарии, будущее развитие системы и т.д. Поэтому целесообразно разрабатывать некоторую общую для всех участников объектную модель и определять принципы ее наращивания и интеграции приложений в систему. MDA решает эти вопросы посредством разделения задач проектирования и реализации. Это позволяет быстро разрабатывать и внедрять новые спецификации взаимодействия, используя новые развернутые технологии, базирующиеся на достоверно проверенных моделях. Процесс создания информационных MDA представляет собой типичный сложившийся цикл разработки любого сложного информационного проекта: фаза выработки требований – фаза анализа – фаза реализации. В рамках каждой из фаз прорабатываются специфические для нее вопросы соответствия требованиям, согласованности и функциональности.
Современные информационные системы, как правило, разворачиваются в глобальных сетях типа сети Интернет. Не являются исключением и системы телемедицины. Время автономных, локальных приложений уходит в прошлое. Их место занимают информационные системы, характеризующиеся многообразием архитектур, многоплатформенностью, разнообразием форматов данных и протоколов.
Заключение
Информационные технологии – это полезный инструмент, который успешно применяется во множестве сфер жизни общества. Медицина – не исключение. Прогресс в информационных технологиях положительно сказался на развитии новых направлений организации медицинской помощи населению. Возможность проведения телеконсультаций для пациентов, наблюдения и контроля в реальном времени, использования систем, позволяющих дистанционно фиксировать и транслировать физиологические параметры – все это выводит медицину на качественно новый уровень. Множество развитых стран уже активно применяет вышеперечисленные и многие другие системы в регулярной практике в сфере здравоохранения.
Все чаще применяются технологии для круглосуточных врачебных онлайн-консультаций, динамического мониторинга состояния пациентов, контроля над ключевыми показателями жизнедеятельности больного и экстренной их коррекции.
Кроме того, при помощи сети Интернет сотрудники медицинского учреждения получают доступ к новейшей информации в области здравоохранения и могут устанавливать профессиональные связи с коллегами для обмена опытом.
Некоторые из названных пунктов уже активно применяются, как в зарубежных странах, так и в России, а что-то находится на стадии внедрения или освоения. Так или иначе, информационные технологии уже внесли значительные изменения в медицину, но многое еще только предстоит сделать.
Высокопоставленные представители регулятора отрасли уже не первый год говорят о создании единого информационного пространства здравоохранения. Для этого необходимо разработать электронные паспорта медицинских учреждений, медицинского персонала, медицинской техники и лекарственных средств, поставщиков медицинского оборудования и лекарственных средств. Необходимо создать единые классификаторы заболеваний и симптомов, медицинской техники и лекарственных средств, процедур, результатов лабораторных исследований, донорских материалов. Кроме того, необходимо сформировать вычислительную и телекоммуникационную инфраструктуру, унифицировать форматы обмена данными, разработать необходимое программное обеспечение.
Создание единого информационного пространства здравоохранения позволит наладить процессы учета, лицензирования и сертификации в области медицины, а также процесс сбора и обработки статистических данных; контролировать взаиморасчеты между ЛПУ и страховыми компаниями, а также финансирование в области социального обеспечения граждан; ввести электронный документооборот и упорядочить с его помощью обмен информацией между ведомствами. Работники системы здравоохранения получат возможность выписывать направления на лабораторные обследования в online-режиме, результаты которых будут возвращаться также в электронном виде; предоставлять необходимые выписки пациентам в электронном виде; выписывать электронные рецепты и оперативно выявлять имеющиеся противопоказания; проводить дистанционные консультации и консилиумы.
Широкое распространение должны получить пластиковые карты, электронные браслеты в стационарах, электронные истории болезни. Появится возможность внедрения типовых интегрированных приложений для медицинских учреждений и браузеров для доступа пациентов.
Одна из первостепенных задач – создание автоматизированных систем хранения и доступа к графической информации (рентген, томограмма, ЭКГ и т.д.) и информации о наличии донорского материала, а также предоставление услуг по интерпретации результатов обследований и организации электронной очереди на донорский материал. Однако, несмотря на то, что в настоящее время основные принципы электронного здравоохранения уже утверждены, концепция его построения недостаточно проработана и не реализуется, а нормативно–правовая база практически отсутствует.
Список литературы:
Васильков В.Г., Сафронов А.И., Щукин В.С., Бершадский А.М. Реализация концепции информационно-справочного обеспечения клинической деятельности в медицине критических состояний // Информационные технологии. 1998. №5. C. 35-38.
Венедиктов Д.Д., Григорьев А.И.,
Казинов В.А. и др. Телемедицинские технологии
в здравоохранении России. Обзорная справка.
2004 г. URL: http://pathology.narod.ru/new_
Довгалевский П.Я., Гриднев В.И., Киселев А.Р. Инновационная медицинская технология амбулаторного лечения артериальной гипертонии на основе компьютерной Internet-системы и мобильной телефонной связи // Современные медицинские технологии. 2008. №1. С. 91-93.
Жигунова А.К. Рост смертности
среди пациентов пожилого возраста,
пользующихся системами телемониторинга
// Украинский медицинский журнал. 2012. URL:
http://www.umj.com.ua/article/
Информационные технологии в медицине (Тематический научный сборник). Под ред. Г.С. Лебедева, О.В. Симакова, Ю.Ю. Мухина. М.: Радиотехника, 2010. 152 с.
Казаков В.Н., Владзимирский А.В., Дорохова Е.Т. Телемедицина в практике семейного врача // Український журнал телемедицини та медичної телематики. 2005. Т. 3. №2. С. 124-130.
Киселев А.Р., Шварц В.А., Посненкова О.М. и др. Профилактика и лечение артериальной гипертонии в амбулаторных условиях с использованием мобильной телефонной связи и Интернет-технологий // Терапевтический архив. 2011. №4. С. 46-52.
Кларк Э.Л. Сердечная недостаточность 2011: обзор избранных исследований, способствовавших последним достижениям клинической кардиологии // Український кардіологічний журнал. 2012. №2. С. 119-128.
Колесник А.Ю. Международный опыт мониторинга медицинских услуг и оценка результативности в сфере здравоохранения Аналитическая записка. USAID, 2005.
Обзор результатов клинических
исследований систем телемониторинга.
URL: http://medts.net/services/
Информация о работе Геоинформационные технологии в медико-профилактическом деле