Информация. Виды и кодирование в вычислительной технике

Автор работы: Пользователь скрыл имя, 09 Марта 2015 в 12:18, реферат

Описание работы

Понятия отличаются от определений тем, что разные люди при разных обстоятельствах могут вкладывать в них разный смысл. В бытовом смысле под информацией обычно понимают те сведения, которые человек получает от окружающей природы и общества с помощью органов чувств. Наблюдая за природой, общаясь с другими людьми, читая книги и газеты, просматривая телевизионные передачи, мы получаем информацию.

Содержание работы

Виды информации в вычислительной технике……………….3
Кодирование информации………………………………………….3
Виды информации…………………………………………………..3
Двоичная система счисления: основные сведения………………..4
Представление двоичных чисел и перевод их в десятичные……..4
Представление информации в вычислительной технике…...5
Кодирование информации………………………………………….5
Кодирование числовой информации………………………………6
Кодирование текстовой информации……………………………...8
Кодирование графической информации…………………………..9
Кодирование звуковой информации……………………

Файлы: 1 файл

Информация. виды и кодирование.docx

— 76.31 Кб (Скачать файл)

         Необходимо помнить, что в настоящее время для кодировки русских букв используют четыре  различные кодовые таблицы (КОИ – 8 (код обмена информацией, 8 битов), KOI8 — восьмибитовая ASCII-совместимая кодовая страница, разработанная для кодирования букв кириллических алфавитов; Существует также семибитовая версия кодировки для русского языка и обмена информацией— КОИ-7.Включает в себя 3 «набора» — Н0, Н1, Н2.  Н0 — это просто US-ASCII; в Н1 все латинские буквы заменены на русские; в Н2 заглавные латинские буквы оставлены, а строчные заменены на заглавные русские .Но она не полностью была совместимая с ASCII поэтому она не прижилась), ASCII (СР1251, СР866), Мас, ISO (Кодировка ISO-8859-5 получила свое название по одноименному стандарту. Ныне широко применяется в операционных средах SunOS/Solaris и SCO UNIX. В этой кодировке такая же раскладка русских букв (за исключением букв 'Ё' и 'ё'), и присутствуют символы псевдографики. Этот вариант можно определить как "текстовая" ISO-8859-5. Официальный стандарт на эту кодировку отсутствует. Возможно некоторое несоответствие таблицы символов этой кодировки, принятой в FLUIdS, действительной ее реализации в SCO UNIX. Это относится, прежде всего, к символам затемнения, а также к нижней строке таблицы, целиком совпадающей с соответствующей строкой таблицы символов альтернативной кодировки.), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой

         Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, которая представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов.

Кодирование графической информации 

         Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

         Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения

         Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды  типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

         Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

         Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

         Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

         В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые  на экране дисплея, получаемые с помощью сканера.

         Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

         Для черно-белого изображения код цвета каждого пикселя задается одним битом.

         Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

         Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров. 

         Самые распространенные форматы хранения графических изображений: BMP и GIF.

         С форматом BMP работает огромное количество программ, так как его поддержка интегрирована в операционные системы Windows и OS/2. Файлы формата BMP могут иметь расширения .bmp, .dib и .rle. Кроме того, данные этого формата включаются в двоичные файлы ресурсов RES и в PE-файлы.

         Глубина цвета в данном формате может быть 1, 2, 4, 8, 16, 24, 32, 48 бит на пиксел, максимальные размеры изображения 65535×65535 пикселов. Однако, глубина 2 бит официально не поддерживается.

         В формате BMP есть поддержка сжатия по алгоритму RLE, однако теперь существуют форматы с более сильным сжатием, и из-за большого объёма BMP редко используется в Интернете, где для сжатия без потерь используются PNG и более старый GIF.

         GIF способен хранить сжатые данные без потери качества в формате не более 256 цветов. Независящий от аппаратного обеспечения формат GIF был разработан в 1987 году (GIF87a) фирмой CompuServe для передачи растровых изображений по сетям. В 1989-м формат был модифицирован (GIF89a), были добавлены поддержка прозрачности и анимации. GIF использует LZW-компрессию, что позволяет неплохо сжимать файлы, в которых много однородных заливок (логотипы, надписи, схемы). GIF широко используется на страницах интернета.

 

Кодирование звуковой информации

Из курса физики известно, что звук есть колебания среды. Чаще всего звуковые колебания с помощью микрофона легко преобразуются в электрические. Сигнал от микрофона очень слаб и нуждается в усилении, что на современном уровне развития техники проблемы также не представляет.

         Раньше, в эпоху аналоговой записи звука, для сохранения полученного электрического сигнала его преобразовывали в ту или иную форму другой физической природы, которая зависела от применяемого носителя. Например, при изготовлении грампластинок сигнал вызывал механические изменения размеров звуковой дорожки, а для старых киноаппаратов звук на пленку наносился оптическим методом; наибольшее распространение в быту получил процесс магнитной звукозаписи. Во всех случаях интенсивность звука была строго пропорциональна какой-либо величине, например, ширине оптической звуковой дорожки, причем эта величина имела непрерывный диапазон значений. 
Переход к записи звука в компьютерном виде потребовал принципиально новых подходов. Дело в том, что при цифровой записи зависимости интенсивности звука от времени возникает принципиальная трудность: исходный сигнал непрерывен, а компьютер способен хранить в памяти только дискретные. Отсюда следует, что в процессе сохранения звуковой информации она должна быть “оцифрована”, т.е. из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет специальный блок, входящий в состав звуковой карты компьютера, который называется АЦП — аналого-цифровой преобразователь. 
Во-первых, АЦП производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксированные моменты времени (удобнее, разумеется, через равные временные промежутки). Частоту, характеризующую периодичность измерения звукового сигнала, принято называть частотой дискретизации. Вопрос о ее выборе не праздный, и ответ в значительной степени зависит от частотного спектра сохраняемого сигнала: существует специальная теорема Найквиста, согласно которой частота оцифровки звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала. Считается, что редкий человек слышит звук частотой более 20 000 Гц = 20 кГц; поэтому для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом принимают равной 22 кГц. Отсюда немедленно следует, что частота при таких требованиях должна быть не ниже 44 кГц3. Названная частота используется, в частности, при записи музыкальных компакт-дисков. Однако часто такое высокое качество не требуется, и частоту дискретизации можно значительно снизить. Например, при записи речи вполне достаточно частоты 8 кГц. Результат при этом получается хотя и не блестящий, но вполне. Хотя качество воспроизведения тем лучше, чем выше частота дискретизации, но и объем звуковых данных при этом тоже возрастает, так что оптимального “на все случаи” значения частоты не существует.

         Во-вторых, АЦП производит дискретизацию амплитуды звукового сигнала. Это следует понимать так, что при измерении имеется “сетка” стандартных уровней (например, 256 или 65 536 — это количество характеризует глубину кодирования), и текущий уровень измеряемого сигнала округляется до ближайшего из них. Напрашивается линейная зависимость между величиной входного сигнала и номером уровня. Иными словами, если громкость возрастает в 2 раза, то интуитивно ожидается, что и соответствующее ему число возрастет вдвое. В простейших случаях так и делается, но, как показывает более детальное рассмотрение, это не самое лучшее решение. Проблема в том, что в широком диапазоне громкости звука человеческое ухо не является линейным. Например, при очень громких звуках увеличение или уменьшение интенсивности звука почти не дает эффекта, в то время как при восприятии шепота очень незначительное падение уровня может приводить к полной потере разборчивости. Поэтому при записи цифрового звука, особенно при 8-битном кодировании, часто используют различные неравномерные распределения уровней громкости, в основе которых лежит логарифмический. 
Итак, в ходе оцифровки звука получается поток целых чисел, причем величина числа соответствует силе звука в данный момент.

         Изложенный метод преобразования звуковой информации с целью хранения в памяти компьютера в очередной раз подтверждает уже неоднократно обсуждавшийся ранее тезис: любая информация в компьютере приводится к числовой форме и затем переводится в двоичную систему.  
При воспроизведении записанного в компьютерный файл звука производится преобразование в противоположном направлении — из дискретной цифровой формы представления сигнала в непрерывную аналоговую, поэтому вполне естественно соответствующий узел компьютерного устройства называется ЦАП — цифроаналоговый преобразователь. Процесс реконструкции первоначального аналогового сигнала по имеющимся дискретным данным нетривиален, поскольку никакой информации о форме сигнала между соседними отсчетами не сохранилось. В разных звуковых картах для восстановления звукового сигнала могут использоваться различные способы. Наиболее наглядный и понятный из них состоит в том, что по имеющимся соседним точкам рассчитывается некоторая гладкая функция, проходящая через заданные точки, которая и принимается в качестве формы аналогового сигнала. Технические возможности современных микросхем позволяют для реконструкции формы сигнала производить весьма сложные вычисления. Выпускаются даже специализированные микропроцессоры, для которых в технической литературе принято название DSP (Digital Signal Processor) — процессоры цифровой обработки сигналов. 
Результаты дискретизации звуковой информации, как и все остальные компьютерные данные, сохраняются на внешних носителях в виде файлов. Звуковые файлы могут иметь различные форматы. Рассмотрим наиболее распространенные из них. 
Формат AU. Этот простой и распространенный формат на системах Sun и NeXT (в последнем случае, правда, файл будет иметь расширение SND). Файл состоит из короткого служебного заголовка (минимум 28 байт), за которым непосредственно следуют звуковые данные. Широко используется в Unix-подобных системах и служит базовым для Java-машины. 
Формат WAVE (WAV). Стандартный формат файлов для хранения звука в системе Windows. Является специальным типом другого, более общего формата RIFF (Resource Interchange File Format); другой разновидностью RIFF служат видеофайлы AVI. Файл RIFF составлен из блоков, некоторые из которых могут, в свою очередь, содержать другие вложенные блоки; перед каждым блоком данных помещается четырех символьный идентификатор и длина. Звуковые файлы WAV, как правило, более просты и имеют только один блок формата.

         MIDI — стандарт цифровой звукозаписи на формат обмена данными между электронными музыкальными инструментами.

         Интерфейс позволяет единообразно кодировать в цифровой форме такие данные как нажатие клавиш, настройку громкости и других акустических параметров, выбор тембра, темпа, тональности и др., с точной привязкой во времени. В системе кодировок присутствует множество свободных команд, которые производители, программисты и пользователи могут использовать по своему усмотрению. Поэтому интерфейс MIDI позволяет, помимо исполнения музыки синхронизировать управление другим оборудованием, например, осветительным, пиротехническим и т.п.

         Последовательность MIDI-команд может быть записана на любой цифровой носитель в виде файла, передана по любым каналам связи. Воспроизводящее устройство или программа называется синтезатором (секвенсором) MIDI и фактически является автоматическим музыкальным инструментом.

         MP3 (более точно, англ. MPEG-1/2/2.5 Layer 3) — третий слой формата кодирования звуковой дорожки MPEG, лицензируемый формат файла для хранения аудиоинформации.

         MP3 является одним из самых распространённых и популярных форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для оценочной передачи музыкальных произведений. Формат может проигрываться практически во всех популярных операционных системах, на большинстве портативных аудиоплееров, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.

         В формате MP3 используется алгоритм сжатия с потерями, разработанный для существенного уменьшения размера данных, необходимых для воспроизведения записи и обеспечения качества воспроизведения звука очень близкого к оригинальному (по мнению большинства слушателей), хотя меломаны говорят об ощутимом различии. При создании MP3 со средним битрейтом 128 кбит/с в результате получается файл, размер которого примерно равен 1/11 от оригинального файла с CD-Audio. Само по себе несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с. MP3-файлы могут создаваться с высоким или низким битрейтом, который влияет на качество файла-результата. Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Данный метод называют кодированием восприятия. При этом на первом этапе строится диаграмма звука в виде последовательности коротких промежутков времени, затем на ней удаляется информация не различимая человеческим ухом, а оставшаяся информация сохраняется в компактном виде. Данный подход похож на метод сжатия, используемый при сжатии картинок в формат JPEG.

Информация о работе Информация. Виды и кодирование в вычислительной технике