Автор работы: Пользователь скрыл имя, 26 Декабря 2012 в 18:45, курс лекций
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования РФ и предназначен для освоения студентами вузов специальной дисциплины "Информатика и информационные технологии". Лаконичное и четкое изложение материала, продуманный отбор необходимых тем позволяют быстро и качественно подготовиться к семинарам, зачетам и экзаменам по данному предмету.
Что же касается команд сложения чисел со знаком, то они те же, что и для чисел без знака.
Вычитание двоичных чисел без знака
Как и при анализе операции сложения, порассуждаем над сутью процессов, происходящих при выполнении операции вычитания. Если уменьшаемое больше вычитаемого, то проблем нет, – разность положительна, результат верен. Если уменьшаемое меньше вычитаемого, возникает проблема: результат меньше 0, а это уже число со знаком. В этом случае результат необходимо завернуть. Что это означает? При обычном вычитании (в столбик) делают заем 1 из старшего разряда. Микропроцессор поступает аналогично, т. е. занимает 1 из разряда, следующего за старшим, в разрядной сетке операнда. Поясним на примере.
Пример
05 = 00000000 00000101
-10 = 00000000 00001010
Для того чтобы произвести вычитание, произведем
воображаемый заем из старшего разряда:
100000000 00000101
-
00000000 00001010
=
11111111 11111011
Тем самым, по сути, выполняется действие
(65 536 + 5) – 10 = 65 531
0 здесь как бы эквивалентен
числу 65536. Результат, конечно,
неверен, но микропроцессор
Пример
5 = 00000000 00000101
+
(-10)= 11111111 11110110
=
11111111 11111011
т. е. мы получили тот же результат, что и в предыдущем примере.
Таким образом, после команды вычитания
чисел без знака нужно
Аналогично командам сложения группа команд вычитания состоит из минимально возможного набора. Эти команды выполняют вычитание по алгоритмам, которые мы сейчас рассматриваем, а учет особых ситуаций должен производиться самим программистом. К командам вычитания относятся следующие:
1) dec операнд – операция декремента, т. е. уменьшения значения операнда на 1;
2) sub операнд_1, операнд_2 – команда вычитания; ее принцип действия: операнд_1 = операнд_1 – операнд_2;
3) sbb операнд_1, операнд_2 – команда вычитания с учетом заема (флага ci): операнд_1 = операнд_1 – операнд_2 – значение_сГ.
Как видите, среди команд вычитания есть команда sbb, учитывающая флаг переноса cf. Эта команда подобна adc, но теперь уже флаг cf исполняет роль индикатора заема 1 из старшего разряда при вычитании чисел.
Вычитание двоичных чисел со знаком
Здесь все несколько сложнее. Микропроцессору незачем иметь два устройства – сложения и вычитания. Достаточно наличия только одного – устройства сложения. Но для вычитания способом сложения чисел со знаком в дополнительном коде необходимо представлять оба операнда – и уменьшаемое, и вычитаемое. Результат тоже нужно рассматривать как значение в дополнительном коде. Но здесь возникают сложности. Прежде всего они связаны с тем, что старший бит операнда рассматривается как знаковый. Рассмотрим пример вычитания 45 – (-127).
Пример
Вычитание чисел со знаком 1
45 = 0010 1101
-
-127 = 1000 0001
=
-44 = 1010 1100
Судя по знаковому разряду, результат получился отрицательный, что, в свою очередь, говорит о том, что число нужно рассматривать как дополнение, равное —44. Правильный результат должен быть равен 172. Здесь мы, как и в случае знакового сложения, встретились с переполнением мантиссы, когда значащий разряд числа изменил знаковый разряд операнда. Отследить такую ситуацию можно по содержимому флага переполнения of. Его установка в 1 говорит о том, что результат вышел за диапазон представления знаковых чисел (т. е. изменился старший бит) для операнда данного размера, и программист должен предусмотреть действия по корректировке результата.
Пример
Вычитание чисел со знаком 2
-45–45 = -45 + (-45)= -90.
-45 = 11010011
+
-45 = 11010011
=
-90 = 1010 0110
Здесь все нормально, флаг переполнения of сброшен в 0, а 1 в знаковом разряде говорит о том, что значение результата – число в дополнительном коде.
Вычитание и сложение операндов большой размерности
Если вы заметили, команды сложения и вычитания работают с операндами фиксированной размерности: 8, 16, 32 бит. А что делать, если нужно сложить числа большей размерности, например 48 бит, используя 16-разрядные операнды? К примеру, сложим два 48-разрядных числа:
Рис. 29. Сложение операндов большой размерности
На рисунке 29 по шагам показана технология сложения длинных чисел. Видно, что процесс сложения многобайтных чисел происходит так же, как и при сложении двух чисел «в столбик», – с осуществлением при необходимости переноса 1 в старший разряд. Если нам удастся запрограммировать этот процесс, то мы значительно расширим диапазон двоичных чисел, над которыми мы сможем выполнять операции сложения и вычитания.
Принцип вычитания чисел с диапазоном представления, превышающим стандартные разрядные сетки операндов, тот же, что и при сложении, т. е. используется флаг переноса cf. Нужно только представлять себе процесс вычитания в столбик и правильно комбинировать команды микропроцессора с командой sbb.
В завершение обсуждения команд сложения и вычитания отметим, что кроме флагов cf и of в регистре eflags есть еще несколько флагов, которые можно использовать с двоичными арифметическими командами. Речь идет о следующих флагах:
1) zf – флаг нуля, который устанавливается в 1, если результат операции равен 0, и в 1, если результат не равен 0;
2) sf – флаг знака, значение которого после арифметических операций (и не только) совпадает со значением старшего бита результата, т. е. с битом 7, 15 или 31. Таким образом, этот флаг можно использовать для операций над числами со знаком.
Умножение чисел без знака
Для умножения чисел без знака предназначена команда
mul сомножитель_1
Как видите, в команде указан всего лишь один операнд-сомножитель. Второй операнд-сомножитель_2 задан неявно. Его местоположение фиксировано и зависит от размера сомножителей. Так как в общем случае результат умножения больше, чем любой из его сомножителей, то его размер и местоположение должны быть тоже определены однозначно. Варианты размеров сомножителей и размещения второго операнда и результата приведены в таблице 10.
Таблица 10. Расположение операндов и результата при умножении
Из таблицы видно, что произведение состоит из двух частей и в зависимости от размера операндов размещается в двух местах – на месте сомножитель_2 (младшая часть) и в дополнительном регистре ah, dx, edx (старшая часть). Как же динамически (т. е. во время выполнения программы) узнать, что результат достаточно мал и уместился в одном регистре или что он превысил размерность регистра и старшая часть оказалась в другом регистре? Для этого привлекаются уже известные нам по предыдущему обсуждению флаги переноса cf и переполнения of:
1) если старшая часть результата нулевая, то после операции произведения флаги cf = 0 и of = 0;
2) если же эти флаги ненулевые, то это означает, что результат вышел за пределы младшей части произведения и состоит из двух частей, что и нужно учитывать при дальнейшей работе.
Умножение чисел со знаком
Для умножения чисел со знаком предназначена команда
[imul операнд_1, операнд_2, операнд_3]
Эта команда выполняется так же, как и команда mul. Отличительной особенностью команды imul является только формирование знака.
Если результат мал и
Деление чисел без знака
Для деления чисел без знака предназначена команда
div делитель
Делитель может находиться в памяти или в регистре и иметь размер 8, 16 или 32 бит. Местонахождение делимого фиксировано и так же, как в команде умножения, зависит от размера операндов. Результатом команды деления являются значения частного и остатка.
Варианты местоположения и размеров операндов операции деления показаны в таблице 11.
Таблица 11. Расположение операндов и результата при делении
После выполнения команды деления содержимое флагов неопределенно, но возможно возникновение прерывания с номером 0, называемого «деление на нуль». Этот вид прерывания относится к так называемым исключениям. Эта разновидность прерываний возникает внутри микропроцессора из-за некоторых аномалий во время вычислительного процесса. Прерывание О, «деление на нуль», при выполнении команды div может возникнуть по одной из следующих причин:
1) делитель равен нулю;
2) частное не входит в отведенную под него разрядную сетку, что может произойти в следующих случаях:
а) при делении делимого величиной в слово на делитель величиной в байт, причем значение делимого в более чем 256 раз больше значения делителя;
б) при делении делимого величиной в двойное слово на делитель величиной в слово, причем значение делимого в более чем 65 536 раз больше значения делителя;
в) при делении делимого величиной в учетверенное слово на делитель величиной в двойное слово, причем значение делимого в более чем 4 294 967 296 раз больше значения делителя.
Деление чисел со знаком
Для деления чисел со знаком предназначена команда
idiv делитель
Для этой команды справедливы все рассмотренные положения, касающиеся команд и чисел со знаком. Отметим лишь особенности возникновения исключения 0, «деление на нуль», в случае чисел со знаком. Оно возникает при выполнении команды idiv по одной из следующих причин:
1) делитель равен нулю;
2) частное не входит в отведенную для него разрядную сетку.
Последнее в свою очередь может произойти:
1) при делении делимого величиной в слово со знаком на делитель величиной в байт со знаком, причем значение делимого в более чем 128 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —128 до + 127);
2) при делении делимого величиной в двойное слово со знаком на делитель величиной в слово со знаком, причем значение делимого в более чем 32 768 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —32 768 до +32 768);
3) при делении делимого величиной в учетверенное слово со знаком на делитель величиной в двойное слово со знаком, причем значение делимого в более чем 2 147 483 648 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —2 147 483 648 до +2 147 483 647).
Вспомогательные
команды для целочисленных
В системе команд микропроцессора есть несколько команд, которые могут облегчить программирование алгоритмов, производящих арифметические вычисления. В них могут возникать различные проблемы, для разрешения которых разработчики микропроцессора предусмотрели несколько команд.
Команды преобразования типов
Что делать, если размеры операндов, участвующих в арифметических операциях, разные? Например, предположим, что в операции сложения один операнд является словом, а другой занимает двойное слово. Выше сказано, что в операции сложения должны участвовать операнды одного формата. Если числа без знака, то выход найти просто. В этом случае можно на базе исходного операнда сформировать новый (формата двойного слова), старшие разряды которого просто заполнить нулями. Сложнее ситуация для чисел со знаком: как динамически, в ходе выполнения программы, учесть знак операнда? Для решения подобных проблем в системе команд микропроцессора есть так называемые команды преобразования типа. Эти команды расширяют байты в слова, слова – в двойные слова и двойные слова – в учетверенные слова (64-разрядные значения). Команды преобразования типа особенно полезны при преобразовании целых со знаком, так как они автоматически заполняют старшие биты вновь формируемого операнда значениями знакового бита старого объекта. Эта операция приводит к целым значениям того же знака и той же величины, что и исходная, но уже в более длинном формате. Подобное преобразование называется операцией распространения знака.
Существуют два вида команд преобразования типа.
1. Команды без операндов. Эти команды работают с фиксированными регистрами:
1) cbw (Convert Byte to Word) – команда преобразования байта (в регистре al) в слово (в регистре ах) путем распространения значения старшего бита al на все биты регистра ah;