Автор работы: Пользователь скрыл имя, 05 Октября 2013 в 16:47, реферат
В истории вычислительной техники можно выделить четыре эпохи: домеханическая эпоха - с древнейших времен до середины XVII века; механическая эпоха - XVII - Х1Хвека;
электромеханическая эпоха - 30-е годы XIX века - середина XX века; электронная эпоха - XX век по наши дни.
Цель работы рассмотреть механические и электромеханические устройства и машины XIX - XX вв.
механический вычислительный машина
Введение
Общая характеристика механической и электромеханической эпох развития ЭВМ
Вычислительные машины и устройства XIX века
Станок Жаккарда
Изобретения Чарльза Бэббиджа
Разностная машина
Аналитическая машина
2.3 Табулятор Холлерита
3. Вычислительные машины и устройства начала XX века
Арифмометр Чебышева
Гидравлический интегратор Лукьянова
Заключение
Список использованных источников
Размещено на http://www.allbest.ru/
Федеральное государственное автономное
Образовательное учреждение
Высшего профессионального образования
«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
Политехнический институт
Кафедра информатики
РЕФЕРАТ
ТЕМА: «ИНФОРМАТИКА В XIX И НАЧАЛЕ XX ВЕКОВ. МЕХАНИЧЕСКИЕ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ УСТРОЙСТВА И МАШИНЫ»
Красноярск 2012
Содержание
Введение
2.3 Табулятор Холлерита
3. Вычислительные машины и устройства начала XX века
Заключение
Список использованных источников
Введение
Могла ли быть ЭВМ построена в прошлом или позапрошлом веке? Конечно нет, потому что тогда не было соответствующей элементной базы: радиолампы и транзисторы изобретены значительно позже.
Всякое устройство, в том числе вычислительное, существует не само по себе, а в определенном окружении, технологическом контексте, на фоне общего уровня техники своего времени.
В истории вычислительной техники можно выделить четыре эпохи: домеханическая эпоха - с древнейших времен до середины XVII века; механическая эпоха - XVII - Х1Хвека;
электромеханическая эпоха - 30-е годы XIX века - середина XX века; электронная эпоха - XX век по наши дни.
Цель работы рассмотреть механические и электромеханические устройства и машины XIX - XX вв.
механический вычислительный машина
1. Общая характеристика механической и электромеханической эпох развития ЭВМ
Механическая эпоха (XVII и XVIII века) - время расцвета точных механических устройств. Часы, механические игрушки, приборы тех лет до сих пор поражают воображение. Именно в это золотое для механики время были созданы первые конструкции вычислительных машин - суммирующая машина Паскаля и арифмометр Лейбница. Вершина механической эпохи -аналитическая машина Бэббиджа, по смелости инженерных решений на столетие опередившая свое время. Однако, несмотря на все свое совершенство, машина Бэббиджа проектировалась как чисто механическая, приводимая в движение небольшим паровым двигателем.
Только в первой трети XIX века были построены электрические машины и наступил век электричества - электромеханическая эпоха. Наряду с техникой сильных токов, пришедшей на замену паровым машинам, стала развиваться слаботочная техника. В 1831 г. Д. Генри в США и Сальваторе дель Негро в Италии изобрели электромагнитное реле. Сначала электромеханические элементы были очень ненадежными и неподходящими для построения сложных приборов, но уже в конце XIX века появилась техническая возможность превратить чисто механические вычислительные устройства в электромеханические, в которых передача сигналов осуществлялась не рейками и шестеренками, а импульсами тока. Начало электромеханической эпохи отмечено изобретением табулятора Холлерита, а конец - релейными вычислительными машинами типа MARK.1
Далее рассмотрим основные устройства и машины, которые были изобретены в XIX - XX вв.
1 История вычислительной техники - http://www.ict. edu.ru/ft/00425 (WChapterl .pdf
2. Вычислительные машины и устройства XIX века
2.1 Станок Жаккарда
С точки зрения вычислительной техники XVIII век был беден крупными событиями, но вот наступил век XIX. Великая французская революция, европейские войны, звездный час наполеоновской империи...
На фоне этих политических событий было сделано одно эпохальное техническое изобретение: в 1904 году французский механик Жан-Мари Жаккар (Jacquard, J. ML; 1752 - 1834) построил ткацкий станок, который автоматически, без участия человека, ткал узорное полотно (оно так теперь и называется - жаккардовое). Станок управлялся программным механизмом на перфокартах, нить поднималась и опускалась в соответствии с наличием или отсутствием отверстий - так создавался желаемый рисунок ткани (см. рисунок 1).
Рисунок 1 - Внешний вид станка Жаккарда
Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Станок Жаккарда вызвал настоящую революцию в ткацком производстве, а положенные в его основу принципы используются по сей день. Однако самую важную роль перфокартам суждено было сыграть в программировании компьютеров. 2
2.2 Изобретения Чарльза Бэббиджа
Из всех изобретателей прошлых столетий, внесших тот или иной вклад в развитие вычислительной техники, ближе всего к созданию компьютера в современном его понимании подошел англичанин Чарлз Бэббидж. Родившийся в 1791 г. в графстве Девоншир в богатой семье, Бэббидж прославился как остротой ума, так и своими чудачествами. В течение 13 лет этот эксцентричный гений заведовал кафедрой математики Кембриджского университета (когда-то этот пост занимал Ньютон), но не прожил при университете ни дня и не прочел там ни одной лекции. Бэббидж был одним из основателей Королевского астрономического общества, автором всевозможных сочинений на самые различные темы - от политики до технологии производства. Он принимал участие в создании различных приборов, в частности тахометра, и приспособлений, например предохранительной решетки для железнодорожного локомотива, которая позволяла отбрасывать с пути случайно попавшие туда предметы. Бэббидж занимался и такими серьезными проблемами, как расчеты смертности населения и реформа почтовой службы, не гнушаясь и более пустяковыми делами. Долгие годы он безуспешно воевал с уличными шарманщиками, игра которых выводила его из себя. Когда Бэббидж умер, лондонская газета «Тайме» писала о нем как о человеке, дожившем почти до 80 лет, «несмотря на преследования со стороны шарманщиков».
Однако главной страстью Бэббиджа была борьба за безукоризненную математическую точность. Он буквально объявил «крестовый поход» против ошибок в таблицах логарифмов, которыми широко пользовались при вычислениях астрономы, математики и штурманы дальнего плавания. Ничто не ускользало от его внимательного взгляда. Однажды он послал письмо поэту А. Теннисону, в котором резко критиковал его строки «Каждый миг какой-то человек умирает, каждый миг рождается другой». Поскольку численность населения Земли не остается постоянной, отмечал Бэббидж, эти строки следовало бы привести в соответствие с истиной следующим образом: «Каждый миг один человек умирает, каждый миг рождается один и одна шестнадцатая другого».
2.2.1 Разностная машина
В 1822 г. Бэббидж опубликовал научную статью с описанием машины, способной рассчитывать и печатать большие математические таблицы. В том же году он построил пробную модель своей Разностной машины, состоящую из шестеренок и валиков, вращаемых вручную при помощи специального рычага (см. рисунок 2). Затем, заручившись поддержкой Королевского общества - самой престижной научной организации Великобритании, - он обратился к правительству с просьбой финансировать создание полномасштабной работающей машины. Эта машина, писал он президенту Королевского общества, возьмет на себя «невыносимо утомительную работу», неизбежную при многократно повторяющихся математических расчетах, которые «представляют собой самое низкое занятие, не достойное человеческого интеллекта». Королевское общество сочло его работу «в высшей степени достойной общественной поддержки», и уже через год британское правительство представило Бэббиджу для реализации его проекта субсидию в 1500 фунтов стерлингов.
Рисунок 2 - Внешний вид разностной машина Ч. Беббиджа
На протяжении следующего десятилетия Бэббидж без устали работал над своим изобретением. Первоначально он рассчитывал завершить ее за три года, но Разностная машина становилась все сложнее по мере того, как он ее модифицировал, совершенствовал и конструировал заново. Бэббиджа все время преследовали болезни, нескончаемая работа и финансовые проблемы. Хотя сумма правительственных субсидий в итоге выросла до 17000 фунт. стерл., росли и сомнения официальных лиц в нецелесообразности затрат и
пользе самого проекта. В результате, финансирование было приостановлено, но лишь через несколько лет правительство официально уведомило Бэббиджа, что выделение средств на его машину прекращается.
2.2.2 Аналитическая машина
1833 г. Бэббидж уже был готов отказаться от своих планов, связанных с Разностной машиной. Это и не удивительно, если принять во внимание сложности его жизни. Однако, продолжая размышлять на ту же тему, он пришел к идее создания еще более мощной машины. Аналитическая машина Бэббиджа в отличие от своей предшественницы должна была не просто решать математические задачи одного определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. По замыслу это была «машина самого универсального характера» - в действительности это ни что иное, как первый универсальный программируемый компьютер.
Говоря об Аналитической машине, Бэббидж отмечал, что графиня «повидимому, понимает ее лучше меня, а уж объясняет ее устройство во много-много раз лучше». Она прекрасно поняла революционную сущность машины - то, что это действительно был «математический станок Жаккарда», изначально как бы бессмысленный, но способный выполнить любую программу, переведенную на язык перфокарт.
Графиня Лавлейс помогла Бэббиджу прояснять его собственные идеи, воодушевляла его, глубоко интересуясь его работой и заражая своим энтузиазмом. Но даже ее литературного дара и обаяния оказалось недостаточно, чтобы решить главную проблему на пути создания Аналитической машины. Если Разностная машина имела сомнительные шансы на успех, то Аналитическая машина и вовсе выглядела нереалистичной. Ее просто невозможно было построить и запустить в работу. В своем окончательном виде машина должна была быть не меньше железнодорожного локомотива. Ее внутренняя конструкция представляла собой беспорядочное нагромождение стальных, медных и деревянных деталей, часовых механизмов, приводимых в действие паровым двигателем. Малейшая нестабильность какой-нибудь крошечной детали приводила бы к стократно усиленным нарушениям в других частях, и тогда вся машина пришла бы в бешенство.
Аналитическая машина так и не была построена. Все, что дошло от нее до наших дней, - это ворох чертежей и рисунков, а также небольшая часть арифметического устройства и печатающее устройство, сконструированное сыном Бэббиджа.
По иронии судьбы Разностной машине повезло больше. Хотя сам Бэббидж больше не возвращался к ней, шведский издатель, изобретатель и переводчик Пер Георг Шойц, прочтя как-то об этом устройстве, построил его слегка видоизмененный вариант, воспользовавшись ценными советами Бэббиджа. Несомненно, это было для Бэббиджа и радостное, и горькое событие, когда он наконец увидел, как его (теперь уже общее) детище успешно прошло испытания - это случилось в 1854 г. в Лондоне. А годом позже Разностная машина Шойца была удостоена золотой медали на
Всемирной выставке в Париже. Спустя еще несколько лет британское правительство, отказавшее в свое время в поддержке Бэббиджу, заказало одну из таких машин для правительственной канцелярии
2.3 Табулятор Холлерита
Лишь через 19 лет после смерти Бэббиджа один из принципов, лежащих в основе идеи Аналитической машины, - использование перфокарт - нашел воплощение в действующем устройстве. Это был статистический табулятор, построенный американцем Германом Холлеритом с целью ускорить обработку результатов переписи населения, которая проводилась в США в 1890 г. Холлерит родился в г. Буффало (шт. Нью-Йорк) в семье немецких эмигрантов. Закончив Колумбийский университет, он поступил на работу в контору по переписи населения в Вашингтоне. Он прибыл сюда как раз в то время, когда сотни служащих приступили к исключительно трудоемкой (длившейся семь с половиной лет) ручной обработке данных, собранных в ходе переписи населения 1880 г.
Джон Шоу Биллингс, высокопоставленный чиновник в бюро переписи, в будущем тесть Холлерита, высказал мысль, что табуляцию можно производить при помощи перфокарт, и Холлерит провел значительную часть последующего десятилетия в попытках разработать такую систему. Сейчас трудно сказать, что навело Биллингса на эту идею - возможно, станок Жаккарда или железнодорожные билетики с перфорацией, но, так или иначе, он разрешил Холлериту заниматься проектированием системы. К 1890 г. Холлерит закончил работу. При испытаниях, проведенных в бюро переписи, статистический табулятор Холлерита вышел победителем в соревновании с несколькими другими системами, и с изобретателем был заключен контракт на проведение переписи 1890 г. Система Холлерита стала еще одним этапом в истории развития компьютеров.
Карты табулятора Холлерита были размером в долларовую бумажку. На каждой карте имелось 12 рядов, в каждом из которых можно было пробить по 20 отверстий, соответствующих таким данным, как возраст, пол, место рождения, количество детей, семейное положение и прочие сведения, включенные в вопросник переписи американского населения. Агенты, проводившие перепись, записывали ответы опрашиваемых в специальные формуляры. Заполненные формуляры отсылались в Вашингтон, где содержащуюся в них информацию переносили на карты путем соответствующего перфорирования. Затем перфокарты загружали в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл, по одной игле на каждую из 240 перфорируемых позиций на карте. Когда игла попадала в отверстие, она проходила его, замыкая контакт в соответствующей электрической цепи машины; это в свою очередь приводило к тому, что счетчик, состоящий из вращающихся цилиндров, продвигался на одну позицию вперед (смю рисунок 3).