Автор работы: Пользователь скрыл имя, 04 Марта 2014 в 20:35, реферат
В наше время, время всеобщей компьютеризации, во всем мире неуклонно происходит увеличение доли людей, работающих в информационной сфере в сравнении с производственной. Так, например, в США сто лет назад, в информационной сфере было занято 5% работающих и в производственной - 95%, а на сегодняшний день это соотношение приближается к 50 на 50, причем подобное перераспределение людей продолжается. Автоматизация и компьютеризация информационной сферы, в общем отстает от автоматизации производственной сферы. Теперь для человека уже недостаточно того, что ЭВМ быстро и точно решает самые сложные расчетные задачи, сегодня человеку становится необходимой помощь ЭВМ для быстрой интерпретации, семантического анализа огромного объема информации.
Введение ……………………………………………………………………..
3
1. Искусственный интеллект. Вопрос о возможности его создания ……..
4
2. Сравнение искусственного и естественного интеллектов ……………..
6
3. Вопрос доверия к результатам деятельности ИИ ....................................
7
4. Современное состояние дел ……………………………………………...
8
5. Тест Тьюринга …………………………………………………………….
9
6. Искусственный интеллект "Панкрата-11" ………………………………
10
Заключение …………………………………………………………………..
12
Литература ………………………………………………………………
Содержание
Введение …………………………………………………………………….. |
3 |
1. Искусственный интеллект. Вопрос о возможности его создания …….. |
4 |
2. Сравнение искусственного и
естественного интеллектов ………… |
6 |
3. Вопрос доверия к результатам
деятельности ИИ .............................. |
7 |
4. Современное состояние дел ………… |
8 |
5. Тест Тьюринга ………………………………………… |
9 |
6. Искусственный интеллект "Панкрата-11" ……………………………… |
10 |
Заключение ………………………………………………………………….. |
12 |
Литература …………………………………………………………………... |
13 |
Введение
В наше время, время всеобщей компьютеризации, во всем мире неуклонно происходит увеличение доли людей, работающих в информационной сфере в сравнении с производственной. Так, например, в США сто лет назад, в информационной сфере было занято 5% работающих и в производственной - 95%, а на сегодняшний день это соотношение приближается к 50 на 50, причем подобное перераспределение людей продолжается. Автоматизация и компьютеризация информационной сферы, в общем отстает от автоматизации производственной сферы. Теперь для человека уже недостаточно того, что ЭВМ быстро и точно решает самые сложные расчетные задачи, сегодня человеку становится необходимой помощь ЭВМ для быстрой интерпретации, семантического анализа огромного объема информации. Эти задачи мог бы решить так называемый “искусственный интеллект”. Вопрос о создании искусственного интеллекта возник почти одновременно с началом компьютерной революции. Но на пути его создания встает много вопросов: принципиальная возможность создания искусственного интеллекта на основе компьютерных систем; будет ли искусственный интеллект ЭВМ, если его удастся создать, подобен человеческому по форме восприятия и осмысления реального мира или это будет интеллект совершенно иного качества; возможность представления знаний в компьютерных системах и много других. Многие проблемы не решены, и среди этих проблем не последнее место принадлежит проблемам, которые могла бы помочь разрешить философия. Некоторые из них мы рассмотрим в этой работе.
1. Искусственный интеллект. Вопрос о возможности его создания
Термин “искусственный интеллект” был введен Дж. Маккарти в 1956 г. Сам термин “искусственный интеллект” имеет два основных значения:
Основная трудность искусственного интеллекта заключается в том, что до сих пор не существует однозначного и общепринятого определения и понимания интеллекта естественного. На практике под искусственным интеллектом подразумевается набор программных и аппаратных средств, использование которых должно было бы приводить к тем же результатам, к которым при решении данного класса задач приходит интеллектуальная деятельность человека. Это по существу итоговая концепция искусственного интеллекта.
Одна из классификаций выделяет два подхода к разработке искусственного интеллекта:
Существуют различные подходы к созданию систем ИИ. На данный момент можно выделить 4 достаточно разных подхода:
1. Логический подход. Основой для изучения логического подхода служит алгебра логики. Каждый программист знаком с ней с тех пор, когда он изучал оператор IF. Своего дальнейшего развития алгебры логики получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними. Кроме этого, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель достигнута, то последовательность использованных правил позволит получить цепочку действий, необходимых для реализации поставленной цели (такую систему еще называют экспертной системой). Мощность такой системы определяется возможностями генератора целей и машинного доказательства теорем. Для того чтобы достичь лучшей выразительности логический подход использует новое направление, его название - нечеткая логика. Главным отличием этого направления является то, что истинность высказывания может принимать помимо значений да / нет (1 / 0) еще и промежуточное значение - не знаю (0.5), пациент скорее всего жив, чем мертв (0.75), пациент скорее всего мертв, чем жив (0.25).
2. Под структурным подходом мы понимаем попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Главной моделирующей структурной единицей в перцептронах (как и в большинстве других вариантах моделирования мозга) является нейрон. Позднее возникли и другие модели, известные под названием нейронные сети (НС) и их реализации - нейрокомпьютеры. Эти модели отличаются по строению отдельных нейронов, по топологии связей между ними и алгоритмами обучения. Среди самых известных в настоящее время вариантов НC можно назвать НC с обратным распространением ошибки, сети Кохонена, сетки Хопфилда, стохастические нейроны сетки. В более широком смысле этот подход известен как Конективизм. Различия между логическим и структурным подходом не столько принципиальные, как это кажется на первый взгляд. Алгоритмы упрощения и вербализации нейронных сетей превращают модели структурного подхода в явные логические модели. С другой стороны, еще в 1943году Маккалок и Питтс показали, что нейронная сеть может реализовать любую функцию алгебры логики .
3. Эволюционный подход. При построении системы ИИ по данному методу основное внимание сосредотачивают на построении исходной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть создана с самыми разнообразными методами, это может быть и НC, и набор логических правил, и любая другая модель. После этого мы включаем компьютер и он, на основе проверки моделей отбирает лучшие из них, и за этими моделями по самым разным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм .
4. Имитационный подход. Этот подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Для нас не важно, какие модели у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя без изменений. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, без разделения на элементарные операции и формального описания действий. Часто это свойство экономит много времени объекту, особенно в начале его жизни.
В рамках гибридных
2. Сравнение искусственного и естественного интеллектов
С момента появления вопроса о создании искусственного интеллекта значительное число усилий ученых посвящается сравнению интеллектуальной системы и человеческого разума. Сравнение это проводится по различным линиям, некоторые из них упоминались выше: сравниваются механизмы и результаты работы компьютерной системы и человеческого мышления, их эффективность в решении тех или иных типов задач. Вопрос о сходстве и различии между искусственной интеллектуальной системой и человеческим разумом нередко связывается с вопросом о перспективах искусственного интеллекта как научного направления. При этом одни исследователи считают, что стратегической линией должно быть все большее приближение возможностей компьютерной системы к возможностям человеческого разума, другие, напротив отстаивают точку зрения, согласно которой целью искусственного интеллекта не моделирование человеческого мышления, а изобретение способов обработки информации, принципиально отличных от человеческих и применяемых там, где человеческое мышление не эффективно или где его использование нецелесообразно.
Интересен подход М. М. Ботвиника к сравнению искусственного и естественного (человеческого) интеллекта: “Условимся, что будем оценивать интеллект с кибернетической точки зрения. А как тогда его можно оценить? Это способность принимать решение - хорошее решение в сложной ситуации при экономном расходовании ресурсов. Если пойдем с этой точки зрения, то не усмотрим различий между естественным и искусственным интеллектом”.
Дж. Хогеландом сформулирован “парадокс механического разума. “Рассуждение есть манипуляция обозначающими символами в соответствии с некоторыми рациональными правилами (в интегрированной системе), для осуществления этих манипуляций должен иметься определенный вид манипуляторов. При этом манипулятор или обращает внимание на то, что обозначают символы и правила, или не обращает. Но если он обращает внимание на значение (смысл), то он не может быть полностью механическим, потому, что значения (смыслы) не испытывают физических воздействий. С другой стороны, если манипулятор не принимает во внимание значение (смысл), то манипуляции не могут считаться примерами рассуждения, так как не может считаться разумным то, что не зависит решающим образом от значения (смысла) символов. Короче говоря, если процесс или система механические, то они не могут считаться разумом, если же это разум, то он не может быть механическим”. Разрешение этого парадокса, считает автор, могло бы служить философским основанием подъема искусственного интеллекта.
3. Вопрос доверия к результатам деятельности ИИ
Хотя создание “подлинного” искусственного интеллекта вряд ли можно считать событием обозримого будущего, уже сегодня компьютеры обладают достаточной степенью автономности и неконтролируемости со стороны человека, чтобы породить проблемы, связанные с доверием к результатам информационно-перерабатывающей деятельности (имеется ввиду переработка информации в широком смысле, предполагающая получение, хранение, преобразование и передачу информации). Значительная часть этих проблем имеет технический или практический характер. Однако существуют и собственно метафизические вопросы, то или иное решение которых способно оказать влияние на выбор стратегии принятия практических мер контроля за компьютерной переработкой информации.
Проблемы контроля за работой компьютера и оценки результатов переработки информации компьютером связаны с невозможностью для человека проследить за выполнением операций. Начиная с определенного количества данных и определенной скорости их обработки, мы должны основываться на сомнительном положении, что компьютер не будет вести себя иначе в сфере больших количеств и скоростей, чем те, с которыми мы непосредственно знакомы.
Что касается человека, то он не в состоянии проверить многие даже относительно короткие последовательности операций, выполняемых обычными компьютерами. В еще большей степени это справедливо для сложных программ, в которых многие вычисления выполняются параллельно.
При неосуществимости прямого контроля за работой машины и исчерпывающей проверки результатов машинных операций, имеет смысл стремится все же обеспечить максимально достижимый контроль и максимально достижимую надежность методов проверки результатов компьютерных вычислений. Средства достижения этой цели различны для различных типов систем.
4. Современное состояние дел
ASIMO - Интеллектуальный гуманоидный робот от Honda , использует сенсоры и специальные алгоритмы для избегания препятствий и хождение по лестнице.
Deep Blue - победил чемпиона мира
по шахматам. Матч Каспаров против
суперЭВМ не принес
Информация о работе Искусственный интеллект. Вопрос о возможности его создания