История кодирования информации

Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 14:30, реферат

Описание работы

Одну и ту же информацию, например, сведения об опасности мы можем выразить разными способами: просто крикнуть; оставить предупреждающий знак (рисунок); с помощью мимики и жестов; передать сигнал «SOS» с помощью азбуки Морзе или используя семафорную и флажковую сигнализацию. В каждом из этих способов мы должны знать правила, по которым можно отобразить информацию. Такое правило назовем кодом.

Содержание работы

Введение 2
Понятие кодирования информации 2
Основная часть 3
История кодирования информации 3
Криптография 3
Сурдожест 3
Кодирование различных типов информации 4
История кодирования символов 4
Азбука Морзе 4
Язык программирования - лого 7
Кодировка CP866 9
Кодировка Mac 9
Кодировка ISO 8859-5 10
Кодировка CP1251 10
Unicode 11
Кодировка символов русского языка 14
Кодовая таблица 14
Кодирование цвета 15
Цветовая модель RGB 15
Цветовая модель CMYK 15
Цветовая модель HSB (HSV) 16
Цветовая модель HSL 17
Цветовая модель LAB 17
Кодирование графической информации 18
Кодирование растровых изображений 20
Пример векторного изображения 2 21
Пример векторного изображения 21
2.4. Кодирование целых и действительных чисел 22
Кодирование звуковой информации 22
Аналоговый сигнал в цифровой форме 23
Кодирование текстовой информации 25
Расчет количества текстовой информации 26
Расчёт колличества текстовой информации 26
Заключение 28
Список используемой литературы 29

Файлы: 1 файл

Кодирование информации Измайлова.doc

— 1.21 Мб (Скачать файл)

Общепринятым на сегодняшний день, дающим достаточно реалистичные монохромные изображения, считается кодирование состояния одного пикселя с помощью одного байта, которое позволяет передавать 256 различных оттенков серого цвета от полностью белого до полностью черного. В этом случае для передачи всего растра из 640x480 пикселов потребуется уже не 38 400, а все 307 200 байтов.

Цветное изображение может формироваться  различными способами. Один из них –  метод RGB (от слов Red, Green, Blue – красный, зеленый, синий), который опирается  на то, что глаз человека воспринимает все цвета как сумму трех основных цветов – красного, зеленого и синего. Например, сиреневый цвет – это сумма красного и синего, желтый цвет – сумма красного и зеленого и т. д. Для получения цветного пикселя в одно и то же место экрана направляется не один, а сразу три цветных луча. Опять упрощая ситуацию, будем считать, что для кодирования каждого из цветов достаточно одного бита. Нуль в бите будет означать, что в суммарном цвете данный основной отсутствует, а единица – присутствует. Следовательно, для кодирования одного цветного пиксела потребуется 3 бита – по одному на каждый цвет. Пусть первый бит соответствует красному цвету, второй – зеленому и третий – синему. Тогда код 101(2) обозначает сиреневый цвет – красный есть, зеленого нет, синий есть, а код 110(2) – желтый цвет – красный есть, зеленый есть, синего нет. При такой схеме кодирования каждый пиксел может иметь один из восьми возможных цветов. Если же каждый из цветов кодировать с помощью одного байта, как это принято для реалистического монохромного изображения, то появится возможность передавать по 256 оттенков каждого из основных цветов. А всего в этом случае обеспечивается передача 256x256x256=16 777 216 различных цветов, что достаточно близко к реальной чувствительности человеческого глаза. Таким образом, при данной схеме кодирования цвета на изображение одного пикселя требуется 3 байта, или 24 бита, памяти. Этот способ представления цветной графики принято называть режимом True Color (true color – истинный цвет) или полноцветным режимом.

При записи изображения в память компьютера кроме цвета отдельных  точек необходимо фиксировать много  дополнительной информации – размеры  рисунка, яркость точек и т. д. Конкретный способ кодирования всей требуемой при записи изображения  информации образует графический формат. Форматы кодирования графической информации, основанные на передаче цвета каждого отдельного пикселя, из которого состоит изображение, относят к группе растровых или BitMap форматов (bit map – битовая карта).

 

Кодирование растровых изображений

        Растровое изображение представляет собой совокупность точек (пикселей) разных цветов.

Наиболее известными растровыми форматами являются BMP, GIF и JPEG форматы. В формате BMP (от BitMaP) задается цветность  всех пикселов изображения. При этом можно выбрать монохромный режим с 256 градациями или цветной с 16 256 или 16 777 216 цветами. Этот формат требует много памяти. В формате GIF (Graphics Interchange Format – графический формат обмена) используются специальные методы сжатия кода, причем поддерживается только 256 цветов. Качество изображения немного хуже, чем в формате BMP, зато код занимает в десятки раз меньше памяти. Формат JPEG (Goint Photographic Experts Group -Уединенная группа экспертов по фотографии) использует методы сжатия, приводящие к потерям некоторых деталей. Однако поддержка 16 777 216 цветов все-таки обеспечивает высокое качество изображения. По требованиям к памяти формат JPEG занимает промежуточное положение между форматами BMP и GIF.

 

 

 

 

 

Кодирование векторных изображений


 

 

                         

Векторное изображение представляет собой совокупность графических  примитивов (точка, отрезок, эллипс…). Каждый примитив описывается математическими  формулами. Кодирование зависти  от прикладной среды.

Растровая графика обладает существенным недостатком – изображение, закодированное в одном из растровых форматов, очень плохо “переносит” увеличение или уменьшение его размеров – масштабирование. Для решения задач, в которых приходится часто выполнять эту операцию, были разработаны методы так называемой векторной графики. В векторной графике, в отличие от основанной на точке – пикселе – растровой графики, базовым объектом является линия. При этом изображение формируется из описываемых математическим, векторным способом отдельных отрезков прямых или кривых линий, а также геометрических фигур – прямоугольников, окружностей и т. д., которые могут быть из них получены. Фирма Adobe разработала специальный язык PostScript (от poster script – сценарий плакатов, объявлений, афиш), служащий для описания изображений на базе указанных методов. Этот язык является основой для нескольких векторных графических форматов. В частности, можно указать форматы PS (PostScript) и EPS, которые используются для описания как векторных, так и растровых изображений, а также разнообразных текстовых шрифтов. Изображения и тексты, записанные в этих форматах, большинством популярных программ не воспринимаются, они могут просматриваться и печататься только с помощью специализированных аппаратных и программных средств.

Кроме растровой и векторной  графики существует еще и фрактальная графика, в которой формирование изображений целиком основано на математических формулах, уравнениях, описывающих те или иные фигуры, поверхности, тела. При этом само изображение в памяти компьютера фактически не хранится – оно получается как результат обработки некоторых данных. Таким способом могут быть получены даже довольно реалистичные изображения природных ландшафтов.

2.4. Кодирование целых и действительных чисел

Целые числа кодируются просто переводом  чисел из одной системы счисления  в другую.

Для кодирования действительных чисел  используют 80-разрядное кодирование. При этом число преобразуют в  стандартный вид.

Целые числа кодируются двоичным кодом  достаточно просто — достаточно взять целое число и делить его пополам до тех пор, пока в остатке не образуется ноль или единица. Совокупность остатков от каждого деления, записанная справа налево вместе с последним остатком, и образует двоичный аналог десятичного числа.

 

19:2 = 9+1 
9:2 = 4 + 1 
4:2 = 2 + 0 
2:2 = 1 + 0 
1

Таким образом, 1910 = 100112.

 

Для кодирования целых чисел  от 0 до 255 достаточно иметь 8 разрядов двоичного  кода (8 бит). Шестнадцать бит позволяют  закодировать целые числа от 0 до 65 535, а 24 бита — уже более 16,5 миллионов разных значений.

Для кодирования действительных чисел  используют 80 разрядное кодирование. При этом число предварительно преобразуется  в нормализованную форму:

3,1415926 = 0,31415926 • 101

300 000 = 0,3 • 106

123 456 789 = 0,123456789 • 1010

Первая часть числа называется мантиссой, а вторая — характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики (тоже со знаком).

Кодирование звуковой информации

Приёмы и методы кодирования  звуковой информацией пришли в вычислительную технику наиболее поздно. В итоге  методы кодирования звуковой информации двоичным кодом далеки от стандартизации и очень разнообразны. Всё же можно  выделить два основных направления кодирования: метод FM (разложение сложного звука на гармонические ряды) и метод таблично-волнового синтеза (хранение в отдельных таблицах пронумерованных образцов различных музыкальных звуков).

Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а следовательно, может быть описан числовыми параметрами, то есть кодом. При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным. 
Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. Если говорить упрощенно, то можно сказать, что где-то в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов (хотя не только для них). Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звука.

 

                                                                

Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой --аналоговый -- сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Поступим следующим образом. Будем  измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его -- аналого-цифровым преобразователем (АЦП).

Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование (для него служит цифро-аналоговый преобразователь -- ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации (т.е. количество отсчетов за секунду) и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук. Но, естественно, увеличивается и размер звукового файла. Поэтому, в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения. Например, при записи на компакт-диски используются 16-битные отсчеты при частоте дискретизации 44032 Гц. При работе же только с речевыми сигналами достаточно 8-битных отсчетов при частоте 8 кГц.

Описанный способ кодирования звуковой информации универсален, он позволяет  представить любой звук, преобразовывать  его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Человек издавна использует довольно компактный способ представления музыки -- нотную запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. А вы уже знаете, что для "перевода" символьной информации в понятную компьютеру форму достаточно иметь таблицу соответствия между символами этого языка и их двоичными кодами.

В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования  позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии. А кроме того, качество звучания зависит исключительно от возможностей синтезатора или звуковой платы компьютера, с помощью которых это происходит.

Кодирование текстовой информации

Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование – один из распространенных способов представления  информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Начиная с конца 60-х годов, компьютеры все больше стали использоваться для обработки текстовой информации, и в настоящее время основная доля персональных компьютеров в мире (и большая часть времени) занята обработкой именно текстовой информации. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1).

Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

 С точки зрения ЭВМ текст состоит из отдельных символов. К числу символов принадлежат не только буквы (заглавные или строчные, латинские или русские), но и цифры, знаки препинания, спецсимволы типа "=", "(", "&" и т.п. и даже (обратите особое внимание!) пробелы между словами.

Тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные нам буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в двоичном коде. Это значит, что каждый символ представляется 8-разрядным двоичным кодом.

Традиционно для кодирования одного символа используется количество информации, равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры, знаки, графические символы и пр.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111.

Таким образом, человек различает  символы по их начертанию, а компьютер - по их коду.

Удобство побайтового кодирования  символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Информация о работе История кодирования информации