История развития компьютерной техники

Автор работы: Пользователь скрыл имя, 24 Сентября 2013 в 22:08, реферат

Описание работы

В данной работе я стремлюсь дать достаточно широкую картину истории развития компьютерной техники.
Таким образом, целью моей работы является рассмотреть развитие компьютерной техники с древних времен до настоящего времени, а также дать краткий обзор счётным устройствам, начиная с домеханического периода и заканчивая современными ЭВМ.

Содержание работы

1. Введение……………………………………………………………3
2. Счётные устройства до появления ЭВМ………………………... 4
1.1. Домеханический период ……………………………………. 4
1.1.1. Счёты на пальцах …………………………………….. 4
1.1.2. Счёты на камнях ………………………………………4
1.1.3. Счет на Абаке ………………………………………….4
1.1.4. Палочки Непера ………………………………………..5
1.1.5. Логарифмическая линейка ……………………………5
1.2. Механический период ………………………………………..6
1.2.1. Машина Блеза Паскаля ………………………………..6
1.2.2. Машина Готфрида Лейбница …………………………7
1.2.3. Перфокарты Жаккара ………………………………… 7
1.2.4. Разностная машина Чарльза Бэббиджа ………………8
1.2.5. Герман Холлерит ………………………………………9
1.2.6. Конрад Цузе …………………………………………....9
1.2.7. Говард Айкен ………………………………………….10
Электронно-вычислительный период ……………………………11
2.1. Аналоговые вычислительные машины (АВМ) …………….11
2.2. Электронные вычислительные машины (ЭВМ) …………...11
2.2.1. I поколение ЭВМ ……………………………………..12
2.2.2. II поколение ЭВМ …………………………………….13
2.2.3. III поколение ЭВМ …………………………………....15
2.2.4. IV поколение ЭВМ ……………………………………16
2.2.5. V поколение ЭВМ …………………………………….17
2.3. Аналого-цифровые вычислительные машины (АЦВМ) …..18
Заключение ……………………………………………………….. 19
Список литературы……………………………………………......20

Файлы: 1 файл

«История развития компьютерной техники».doc

— 140.50 Кб (Скачать файл)

Французский ткач и механик  Жозеф Жаккар создал первый образец  машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми  и пущенными нитями другую нить. Затем каждая из нитей опускается или  поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте.

Работа станка программировалась  при помощи целой колоды перфокарт, каждая из которых управляла одним  ходом челнока. Информация на карте  управляла станком.

Из всех изобретателей  прошлых столетий, внесших тот или иной вклад в развитие вычислительной техники, ближе всего к созданию компьютера в современном его понимании подошел англичанин Чарльз Бэббидж.

Разностная машина Чарльза Бэббиджа

В 1812 году английский математик  Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. В 1822 г.  Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где хранится, и по сей, день.

Однако эта неудача  не остановила Бэббиджа, и в 1834 году он приступил к новому проекту  – созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. Для этого  она должна была уметь выполнять  программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. Аналитическая машина в отличие от своей предшественницы должна была не просто решать математические задачи одного определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. В действительности это не что иное, как первый универсальный программируемый компьютер. Но если Разностная машина имела сомнительные шансы на успех, то Аналитическая машина и вовсе выглядела нереалистичной. Её просто невозможно было построить и запустить в работу. В своем окончательном виде машина должна была быть не меньше железнодорожного локомотива. Ее внутренняя конструкция представляла собой беспорядочное нагромождение стальных, медных и деревянных деталей, часовых механизмов, приводимых в движение паровым двигателем. Малейшая нестабильность какой-нибудь крошечной детали приводила бы к стократно усиленным нарушениям в других частях, и тогда вся машина пришла бы в негодность.

К сожалению, он не смог довести  до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера.

В 1985 г. сотрудники Музея  науки в Лондоне решили выяснить, наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго  до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления.

Лишь через 19 лет спустя после смерти Бэббиджа один из принципов, лежащий в основе Аналитической  машины, — использование перфокарт—нашел воплощение в действующем устройстве. Это был статистический табулятор, построенный американцем Германом Холлеритом с целью ускорить обработку результатов переписи населения США в 1890 г.

Герман Холлерит

В конце XIX в. были созданы  более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

Конрад Цузе

Лишь спустя 100 лет  машина Бэббиджа привлекла внимание инженеров. В конце 30-х годов XX века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Конрад Цузе создал машину Z3, полностью управляемую с помощью программы.

Говард Айкен

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер.

В 1944 г. американец Говард Айкен на одном из предприятий  фирмы ІВМ построил довольно мощную по тем временам вычислительную машину «Марк-1». В этой машине для представления  чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле. Программа обработки данных вводилась с перфоленты. Размеры: 15/2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 секунды.

 

Электронно-вычислительный период

Аналоговые вычислительные машины (АВМ)

В АВМ все математические величины представляются как непрерывные  значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической  цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.

Достоинства АВМ:

  1. Высокая скорость решения задач, соизмеримая со  скоростью прохождения электрического сигнала;
  2. Простота конструкции АВМ;
  3. Лёгкость подготовки задачи к решению;
  4. Наглядность протекания исследуемых  процессов,  возможность  изменения параметров исследуемых процессов во время самого исследования.

Недостатки  АВМ:

  1. Малая точность получаемых результатов (до 10%);
  2. Алгоритмическая ограниченность решаемых задач;
  3. Ручной ввод решаемой задачи в машину;
  4. Большой объём задействованного оборудования,  растущий  с  увеличением сложности задачи.

Электронные вычислительные машины (ЭВМ)

В отличие от АВМ, в  ЭВМ числа представляются в виде последовательности цифр. В современных  ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ  можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.

ЭВМ разделяются на большие  ЭВМ, мини-ЭВМ и микро-ЭВМ. Они  отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.

Достоинства ЭВМ:

  1. Высокая точность вычислений;
  2. Универсальность;
  3. Автоматический ввод информации, необходимый для решения задачи;
  4. Разнообразие задач, решаемых ЭВМ;
  5. Независимость количества оборудования от сложности задачи.

Недостатки ЭВМ:

  1. Сложность  подготовки  задачи  к  решению  (необходимость  специальных знаний методов решения задач и программирования);
  2. Недостаточная наглядность протекания  процессов,  сложность  изменения параметров этих процессов;
  3. Сложность структуры ЭВМ, эксплуатация и техническое обслуживание;
  4. Требование специальной аппаратуры при  работе  с  элементами  реальной аппаратуры.

Электронно-вычислительную технику принято делить на поколения. Смена поколений связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту вычислительной мощности ЭВМ, т.е. быстродействия и объема памяти, а также происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером. Можно выделить 4 основные поколения ЭВМ.

I поколение ЭВМ

В первой половине XX в. бурно  развивалась радиотехника. Основным элементом радиоприемников и  радиопередатчиков в то время  были электронно-вакуумные лампы. Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Начиная с 1943 года группа специалистов под руководством Говарда 
Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9/15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток – управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.

В 1946 г. вышла в свет статья Джона фон Неймана, в которой  были изложены принципы устройства и  работы ЭВМ. Главный из них - принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины.

В 1949 г. была построена  первая ЭВМ с архитектурой Неймана.

Новые машины первого  поколения сменяли друг друга  довольно быстро. В 1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров. МЭСМ имела 2 вида памяти: оперативное запоминающее устройство, в виде 4 панелей высотой в 3 метра и шириной 1 метр; и долговременная память в виде магнитного барабана объемом 5000 чисел. Всего в МЭСМ было 6000 электронных ламп, а работать с ними можно было только после 1,5-2 часов после включения машины. Ввод данных осуществлялся с помощью магнитной ленты, а вывод – цифропечатающим устройством сопряженным с памятью. МЭСМ могла выполнять 50 математических операций в секунду, запоминать в оперативной памяти 31 число и 63 команды (всего было 12 различных команд), и потребляла мощность равную 25 киловаттам.

В 1952 году на свет появилась  американская машина EDWAC. Стоит также отметить построенный ранее, в 1949 году, английский компьютер EDSAC (Electronic Delay Storage Automatic Calculator) – первую машину с хранимой программой. В 1952 году советские конструкторы ввели в эксплуатацию БЭСМ – самую быстродействующую машину в Европе, а в следующем году в СССР начала работать «Стрела» – первая в Европе серийная машина высокого класса. В то-время эти машины были одними из лучших в мире. Самым выдающимся достижением в 60-х г. было изобретение БЭСМ - 6 - это первая отечественная и одна из первых в мире ЭВМ с быстродействием 1 миллион операций в секунду. Среди создателей отечественных машин в первую очередь следует назвать имена С.А. Лебедева, Б.Я. Базилевского, И.С. Брука, Б.И. Рамеева, В.А. Мельникова, М.А. Карцева, А.Н. Мямлина. В 50-х годах появились и другие ЭВМ: «Урал», М-2, М-3, БЭСМ-2, «Минск-1», – которые воплощали в себе все более прогрессивные инженерные решения.

Итак, первое поколение  ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин  первого поколения доходила до 20 тыс. опер/сек. Для ввода программ и данных использовались перфокарты и перфоленты. Т.к. внутренняя память машин была невелика, то они пользовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержащие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд Это довольно трудоемкая работа. Поэтому программирование в то времена было доступно немногим.

II поколение ЭВМ

Элементной базой второго  поколения стали полупроводники. Без сомнения, транзисторы можно  считать одним из наиболее впечатляющих чудес XX века.

Патент на открытие транзистора был выдан в 1948 году американцам Д. Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны.

Первая бортовая ЭВМ  для установки на межконтинентальной ракете – 
«Атлас» – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта. В 1961 году наземные компьютеры «стретч» фирмы «Бэрроуз» управляли космическими полетами ракет «Атлас», а машины фирмы IBM контролировали полет астронавта Гордона Купера. Под контролем ЭВМ проходили полеты беспилотных кораблей типа «Рейнджер» к Луне в 1964 году, а также корабля «Маринер» к Марсу. Аналогичные функции выполняли и советские компьютеры.

Информация о работе История развития компьютерной техники