Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 02:52, курсовая работа
Прогресс не остановить. Персональные компьютеры занимают значительное место в жизни людей. Ещё каких-то десять лет назад компьютер мог показаться чем-то невероятным, а вот сейчас мы уже не можем представить нашу жизнь без компьютера. Поэтому можно сказать, что человечество стало зависимо от ПК. Компьютеры первоначально использовались только на рабочих местах. Однако вскоре они стали именем нарицательным, которое произвело революцию. Когда компьютеры были дополнены сетью Интернет, это дало толчок к глобализации, в результате чего мир стал ближе каждому.
Задание на курсовую работу 2
Замечания руководителя 3
Введение 6
1 Видеоподсистема ПК 7
1.1 Монитор 7
1.2 Типы мониторов 8
1.2.1 Мониторы с электронно-лучевой трубкой 8
1.2.1.1 Теневая маска (shadow mask) 12
1.2.1.2 Электронно-лучевая трубка с апертурной решеткой 15
1.2.1.3 Электронно-лучевая трубка с щелевой маской 17
1.2.1.4 Характеристики CRT мониторов 19
1.2.1.4.1 Размер рабочей области экрана 19
1.2.1.4.2 Радиус кривизны экрана ЭЛТ монитора 19
1.2.1.4.3 Экранное покрытие 20
1.2.1.4.4 Разрешение 21
1.2.1.4.5 Pitch’и и качество монитора 22
1.2.1.4.6 Горизонтальная развертка 23
1.2.1.4.7 Вертикальная развертка, или частота кадров 24
1.2.1.4.7 Полоса пропускания 25
1.2.1.4.8 Светопередача монитора 25
1.2.2 Жидкокристаллические мониторы 26
1.2.2.1 Характеристики LCD мониторов 32
1.2.2.1.1 Формат экрана 32
1.2.2.1.2 Разрешение экрана 33
1.2.2.1.3 Диагональ экрана 33
1.2.2.1.4 Контрастность 34
1.2.2.1.5 Яркость 34
1.2.2.1.6 Время отклика 34
1.2.2.1.7 Угол обзора 35
1.2.2.1.8 Дефектные пиксели 35
1.2.2.1.9 Интерфейсы 35
1.2.2.2 Типы матриц 36
1.2.2.2.1 Матрицы TN 36
1.2.2.2.2 Матрицы IPS 38
1.2.2.2.3 Матрицы PVA/MVA 39
1.2.3 LCD мониторы с LED-подсветкой 41
1.2.3.1 Преимущества LED 43
1.2.4 OLED – вечно перспективные дисплеи 44
1.2.4.1 Типы OLED 45
1.2.4.2 Преимущества и недостатки OLED 49
1.3 Сенсорные экраны 51
1.3.1 Резистивные панели 54
1.3.2 Емкостные панели 57
1.3.3 Инфракрасные панели 59
2 Операционная система Windows 61
2.1 История развития ОС Windows от Windows 1.0 до Windows 8 62
2.1.1 Windows NT 63
2.1.2 Windows 95 63
2.1.3 Windows 98 64
2.1.4 Windows 2000 64
2.1.5 Windows XP 64
2.1.6 Windows Server 2003 65
2.1.7 Windows Vista 65
2.1.8 Windows 7 66
2.2 Операционная система Windows 8 66
2.2.1 Рабочий стол и панель задач 71
2.2.2 Проводник в Windows 8 72
3 Практическая часть 75
Заключение 77
Список литературы **
Цвета на мониторе (впрочем, как и на телевизионном экране) получаются аддитивным (суммарным) смешением трех основных цветов — RGB, то есть красного (Red), зеленого (Green) и синего (Blue). Эта триада, смешанная с одинаковой интенсивностью, дает нам белый цвет, а для того чтобы добиться цветовых оттенков, интенсивность каждого из этих цветов дозируется в необходимой пропорции.
Рисунок 2 – RGB триады
Мониторы с электронно-лучевой трубкой, как правило, имеют три отдельные электронные пушки (по одной на каждый из основных цветов триады), которые бьют по небольшому участку люминофора своего цвета с различной интенсивностью.
Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза.
Таким образом, электронно-лучевые трубки, используемые в мониторах, имеют следующие основные элементы:
Указанные элементы и находились в центре непрерывной борьбы производителей за качество изображения.
Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны. В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880 °C, при которой происходит испускание (эмиссия) электронов с поверхности катода. Остальные электроды трубки используются для ускорения и формирования пучка электронов. Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. Электронные лучи, расходясь после соответствующей маски, попадают на точки люминофора нужного цвета и заставляют их светиться.
Используемая в CRT мониторах технология была разработана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, проще говоря, для осциллографа. Развитие этой технологии применительно к созданию мониторов. За последние годы привело к производству все больших по размеру экранов с высоким качеством и низкой стоимостью. Сегодня найти 14"-й монитор очень сложно, хотя несколько лет назад это был стандарт. Пару лет назад стандартными являлись пятнадцати и семнадцати дюймовые мониторы. Высокий спрос был также и на мониторы с диагональю 19" и более, особенно среди людей, работа которых связана с подготовкой печатных изданий, графикой. Почему я говорю, что спос был? Дело в том что сейчас мониторы с электронно-лучевой трубкой практически полностью вытеснили LCD мониторы. Но об этом позже. А пока вернёмся в CRT мониторам.
14", 15", 17", 19", 21" и т.д. – размер экрана монитора по диагонали
(в дюймах). Четырнадцатидюймовый монитор,
как правило, представляет собой устаревающую
модель с выпуклым экраном, минимумом
настроек и нечетким изображением.
К профессиональным
мониторам относятся модели с размером экрана семнадцать
дюйм и выше. Их отличает высокое качество
изображения.
Следует отметить, что реальная рабочая
область монитора меньше размера по диагонали.
Так, например, для 17-дюймовых мониторов
рабочая область составляет всего 15.9-16".
Подобные пропорции несоответствия номинальной
и реальной рабочих областей имеют место
для всех размеров и марок мониторов.
800х600/85Hz – один из режимов монитора. В этом режиме разрешение 800х600 (т.е. Количество отображаемых на экране точек – 800 по горизонтали, 600 по вертикали) может поддерживаться при частоте кадровой развертки 85Hz.
Частота кадровой
развертки показывает, сколько раз в секунду обновляется
изображение на экране. Чем чаще происходит
обновление, тем меньше мерцание. Мерцание
же является причиной утомления глаз и
даже ухудшения зрения. Минимальной приемлемой
частотой можно считать 75Hz, но лучше, если
монитор поддерживает частоты в 85Hz и гораздо
выше, так как в этих случаях мерцания
нет.
Рабочим разрешением 14-дюймовых мониторов
является 800х600 точек, 15-дюймовых – 1024х768,
а 17-дюймовых от 1280х1024.
69Hz, 70khz, 95khz, 30-70khz, 30-95khz – частоты и диапазоны частот строчной развертки.
В зависимости
от расположения электронных
пушек и конструкции цветоделит
1.2.1.1 Теневая маска (shadow mask)
Теневая маска (shadow mask) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.
Рисунок 3 – Электронно-лучевая трубка с теневой маской
Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство теневых масок изготавливают из инвара. Инвар (invar) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Рисунок 4 – RGB триада теневой маски
Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рисунке ниже, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.
Рисунок 5 – смешение электронного лучи при деформациях теневой маски
Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно.
Рисунок 6 – Шаг точек (dot pitch)
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения. Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.
1.2.1.2 Электронно-лучевая трубка с апертурной решеткой
Есть еще один вид трубок, в
которых используется апертурна
Рисунок 7 – Электронно-лучевая трубка с апертурной решёткой
Апертурная решетка — это тип маски, используемый
разными производителями в своих технологиях
для производства кинескопов, носящих
разные названия, но имеющих одинаковые
по сути технологии. Например, технология Trinitron от Sony,
Рисунок 8 – Расстояние между полосами люминофора одинакового цвета
Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полос (strip pitch) и измеряется в миллиметрах. Чем меньше значение шага полос, тем выше качество изображения на мониторе. При апертурной решетке имеет смысл только горизонтальный размер точки. Так как вертикальный определяется фокусировкой электронного луча и отклоняющей системой.
1.2.1.3 Электронно-лучевая трубка с щелевой маской (Slot Mask)
Щелевая маска (slot mask) широко применяется компанией NEC под именем «cromaclear». Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.
Рисунок 9 – Шаг трубок щелевой маски
Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой pureflat (ранее называвшейся panaflat). Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, — по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой.
Оба типа масок — теневая маска и апертурная решетка — имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения. Кроме того, рабочая поверхность этих кинескопов представляет собой сегмент цилиндра с большим радиусом кривизны по горизонтали (в отличие от ЭЛТ с теневой маской, имеющих сферическую поверхность экрана), что существенно (до 50%) снижает интенсивность бликов на экране.
0.21, 0.25, 0.26, 0.27, 0.28 – размер "зерна" (точки) в миллиметрах.
Для трехточечной теневой маски размер
"зерна" определяется расстоянием
(т.е. "шагом") между двумя соседними
точками (одного цвета) люминофора по диагонали.
Для апертурной решетки и щелевой маски
под шагом подразумевается расстояние
между полосками одного цвета (по горизонтали).
Приемлемым сегодня считается шаг 0.28 мм,
качественные мониторы имеют шаг 0.25 мм,
а профессиональные – 0.22 мм. Величина
"зерна" во многом определяет контрастность
изображения. Поэтому для работы с графикой
необходимо выбирать мониторы с шагом
не менее 0.25 мм.
1.2.1.4 Характеристики CRT мониторов
1.2.1.4.1 Размер рабочей области экрана
Размер экрана - это размер по диагонали от одного угла экрана до другого. У ЖК-мониторов номинальный размер диагонали экрана равен видимому, но у ЭЛТ-мониторов видимый размер всегда меньше.
Изготовители мониторов в дополнение к сведениям о физических размерах кинескопов также предоставляют информацию о размерах видимой части экрана. Физический размер кинескопа — это внешний размер трубки. Поскольку кинескоп заключен в пластмассовый корпус, видимый размер экрана немного меньше его физического размера. Так, например, для 14-дюймовой модели (теоретическая длина диагонали 35,56 см) полезный размер диагонали равен 33,3–33,8 см в зависимости от конкретной модели, а фактическая длина диагонали 21-дюймовых устройств (53,34 см) составляет от 49,7 до 51 см.
1.2.1.4.2 Радиус кривизны экрана ЭЛТ монитора
Кинескопы ЭЛТ мониотров по форме экрана делятся на три типа: сферический, цилиндрический и плоский .
Рисунок 10 – Радиусы кривизны мониторов
У сферических экранов поверхность экрана выпуклая и все пиксели (точки) находятся на равном расстоянии от электронной пушки. Такие ЭЛТ-мониторы не дороги, но изображение, выводимое на них, не очень высокого качества. В настоящее время применяются только в самых дешевых мониторах.
Цилиндрический экран представляет собой сектор цилиндра: плоский по вертикали и закругленный по горизонтали. Преимущество такого экрана - большая яркость по сравнению с обычными плоскими экранами мониторов и меньшее количество бликов на экране.
Плоские экраны (Flat Square Tube) наиболее перспективны. Устанавливаются в самых совершенных моделях мониторов. Некоторые кинескопы этого типа на самом деле не являются плоскими - но из-за очень большого радиуса кривизна (80 м - по вертикали, 50 м - по горизонтали) они выглядят действительно плоскими (это, например кинескоп FD Trinitron компании Sony).
1.2.1.4.3 Экранное покрытие
Важным параметром кинескопа являются отражающие и защитные свойства его поверхности. Если поверхность экрана никак не обработана, то он будет отражать все предметы, находящиеся за спиной пользователя, а также его самого. Кроме того, поток вторичного излучения, возникающий при попадании электронов на люминофор, может негативно влиять на здоровье человека.
Рисунок 11 – Отражающие покрытия
Наиболее распространенным и доступным видом антибликовой обработки экрана является покрытие диоксидом кремния. Это химическое соединение внедряется в поверхность экрана тонким слоем. Если поместить обработанный диоксидом кремния экран под микроскоп, то можно увидеть шершавую, неровную поверхность, которая отражает световые лучи от поверхности под различными углами, устраняя блики на экране. Антибликовое покрытие помогает без напряжения воспринимать информацию с экрана, облегчая этот процесс даже при хорошем освещении. Некоторые изготовители кинескопов добавляют в покрытие также химические соединения, выполняющие функции антистатиков. В наиболее передовых способах обработки экрана для улучшения качества изображения используются многослойные покрытия из различных видов химических соединений. Покрытие должно отражать от экрана только внешний свет. Оно не должно оказывать никакого влияния на яркость экрана и четкость изображения, что достигается при оптимальном количестве диоксида кремния, используемого для обработки экрана.
Информация о работе Изучение аппаратного и программного обеспечения персонального компьютера