Каталитический крекинг

Автор работы: Пользователь скрыл имя, 13 Января 2015 в 13:30, реферат

Описание работы

Нефтегазоперерабатывающая промышленность является одной из экономически наиболее значимых составляющих топливно-энергетического комплекса любого государства. Природный газ является дешевым энергетическим и бытовым топливом. Перегонкой нефти получают автомобильные бензины, керосин, реактивное, дизельное и котельное топливо. Из высококипящих фракций нефти производят большой ассортимент смазочных и специальных масел, консистентных смазок.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………………………….…3
1. ПЕРЕРАБОТКА НЕФТИ………………………………………………………………….…..4
1.1 Первичная переработка……………………………………………………………....4
1.2 Вторичная переработка………………………………………………………….…...5
2. КАТАЛИТИЧЕСКИЙ КРЕКИНГ………………………………………………………….…6
2.1 Значение и назначение процесса………………………………………………….…6
2.2 Сырье каталитического крекинга…………………………………………………....7
2.3 Облагораживание сырья каталитического крекинга………………………….…..10
2.4 Катализаторы крекинга………………………………………………………….…..12
ЗАКЛЮЧЕНИЕ………………………………………………………………….……………14
СПИСОК ЛИТЕРАТУРЫ…………………………………………………

Файлы: 1 файл

Реферат по информатике.doc

— 134.00 Кб (Скачать файл)

 

Как видно из таблицы наилучшим для каталитического крекинга по выходу целевых продуктов (бензина и сжиженных газов) является сырье с преобладанием парафиновых и нафтеновых углеводородов. Полициклические ароматические углеводороды и смолы сырья в условиях крекинга дают мало бензина и много тяжелых фракций и кокса. Сернистые и кислородные соединения однотипного по химическому составу сырья не оказывают существенного влияния на материальный баланс каталитического крекинга, но ухудшают качество продуктов. Однако следует указать, что с увеличением содержания гетероорганических соединений в сырье, как правило, одновременно повышается содержание в нем полициклических углеводородов и смол.

 К компонентам, обратимо дезактивирующим катализаторы крекинга, относят полициклические ароматические углеводороды, смолы, асфальтены и азотистые соединения сырья. Об обратимой дезактивирующей способности сырья можно судить: косвенно по плотности, а количественно — по коксуемости, определяемой по Конрадсону. Как правило, чем выше коксуемость сырья, тем больше выход кокса на катализаторе.

Обычно на установках каталитического крекинга преимущественно перерабатывают типовое сырье (вакуумный газойль 350-500° С) с коксуемостью не более 0.3-0.5 % мас. Если регенератор имеет запас мощности по массе сжигаемого кокса, то может быть использовано

сырье с коксуемостью до 2-3 % мас. На специальных установках, предназначенных для крекинга остаточного сырья и имеющих системы отвода тепла из регенератора, допускается коксуемость сырья до 5% мас.

Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания: они прочно адсорбируются на кислотных активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолитсодержащие катализаторы, благодаря молекулярно-ситовым свойствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные.

Металлоорганические соединения, содержащиеся преимущественно в

высококипящих и особенно остаточных фракциях нефти, относят к необратимо дезактивирующим компонентам сырья крекинга. Блокируя активные центры катализатора, они отрицательно влияют не только на его активность, но и на селективность. Так, по мере увеличения содержания никеля и ванадия, являющихся, как известно, дегидрирующими металлами, интенсивно возрастает в продуктах крекинга выход водорода и сухих газов, а выход бензина существенно снижается.

На установках каталитического крекинга, на которых не предусмотрены специальные приемы но улавливанию или пассивации отравляющего действия металлов, содержание их в сырье нормируется не более 2 г/т.

Для переработки сырья с коксуемостью более 10 % масс. и содержащем металлов 10-

30 г/г и более требуется обязательная его предварительная подготовка.

 

2.3 Облагораживание сырья каталитического крекинга

 

С целью снижения содержания металлов и коксогенных компонентов в сырье до такой степени, чтобы его последующая каталитическая переработка была бы более экономична, т.е. при умеренных габаритах регенератора и без чрезмерного расхода дорогостоящего катализатора, осуществляется его подготовка.

Из процессов облагораживания сырья каталитического крекинга в настоящее время широко применяется каталитическая гидроочистка преимущественно вакуумных газойлей и более тяжелого сырья с ограниченным содержанием металлов.

К сырью гидрогенизационных процессов, по сравнению с каталитическим крекингом, не предъявляется столь жестких ограничений по коксуемости, поскольку скорости коксообразования в этих процессах несопоставимы. Однако по содержанию металлов к сырью обоих процессов предъявляются практически одинаковые ограничения, поскольку металлы сырья одинаково необратимо дезактивируют как металлические центры, так и кислотные центры катализаторов.

Необходимо отметить следующие достоинства комбинированной каталитической переработки с предварительной гидроочисткой сырья крекинга:

    • существенно снижается содержание сернистых и азотистых соединений во всех жидких продуктах каталитического крекинга и содержание оксидов серы в газах регенерации, в результате отпадает необходимость в их облагораживании и снижаются выбросы вредных газов в атмосферу
    • полициклические ароматические углеводороды и смолы сырья при гидроочистке подвергаются частичному гидрокрекингу с образованием алкилароматических углеводородов с меньшим числом колец, в результате снижается коксообразование в процессе каталитического крекинга;
    • существенно снижается содержание металлов в гидроочищенном сырье, что снижает расход катализаторов крекинга;
    • при каталитическом крекинге гидроочищенного сырья увеличивается выход целевых (более высокого качества) продуктов и снижается выход газойлей и кокса.

К недостаткам комбинированной переработки следует отнести увеличение капитальных и эксплуатационных затрат и возможность переработки сырья с ограниченным содержанием металлов.

К некаталитическим процессам подготовки сырья к каталитическому крекингу (а также гидрокрекингу) не предъявляются таковые ограничения по содержанию металлов, что позволяет значительно расширить ресурсы сырья за счет вовлечения остаточных видов сырья. Но они характеризуются повышенными капитальными и эксплуатационными затратами, из-за чего сдерживается их широкое применение в современной нефтепереработке.

Из внедренных в промышленном масштабе в нефтепереработке методов некаталитической подготовки остаточных видов сырья следует отметить процессы сольвентной и термоадсорбционной деасфальтизации и деметаллизации.

Сольвентная деасфальтизация с использованием в качестве растворителей пропана, бутана, пентана или легкого бензина основана на технологии подобной пропановой деасфальтизации гудронов, применяемой в производстве смазочных масел. В этих процессах наряду с деасфальтизацией и обессмоливанием достигаются одновременно деметаллизация, а также частичное обессеривание и деазотирование тяжелых нефтяных остатков (ТНО), что существенно облегчает последующую их каталитическую переработку.

В случае применения некаталитических процессов облагораживания ТНО возможна трехступенчатая переработка остаточного сырья по схеме: деасфальтизация гудрона (сольвентная или термоадсорбционная) → гидрообессеривание смеси деасфальтизата и вакуумного газойля  → каталитический крекинг гидрогенизата.

Целевым назначением процесса 3D (дискриминационной деструктивной дистилляции) является подготовка нефтяных остатков (тяжелых нефтей, мазутов, гудронов, битуминозных нефтей) для последующей каталитической переработки путем жесткого термоадсорбционного крекинга в реакционной системе с ультракоротким временем контакта

(доли секунды) циркулирующего  адсорбента (контакта) с нагретым диспергированным сырьем. В отличие от АРТ в процессе 3D вместо лифт-реактора используется реактор нового поколения, в котором осуществляется исключительно малое время контакта сырья с адсорбентом на коротком горизонтальном участке трубы на входе в сепаратор циклонного типа. Эксплуатационные испытания демонстрационной установки показали, что выход и качество продуктов 3D выше, чем у процесса АРТ.

Процесс АКО (адсорбционно-контактная очистка) разрабатывался во ВНИИНП в 1980-1990-х гг. и испытан в широком масштабе, предназначен для глубокой очистки нефтяных остатков от нежелательных примесей; по аппаратурному оформлению реакционной системы (лифт-реакторного типа) аналогичен процессу АРТ.

В качестве адсорбента используется природный мелкозернистый каолин . Типичный режим процесса: массовая скорость подачи сырья - 20 ; время контактирования — 0,5 с; температура в реакторе — 520 °С.

В результате очистки мазута происходит удаление тяжелых металлов на 95-98 %, серы - на 35-45 %, азота — на 50-60 %, а коксуемость снижается на 75-80 % мас. Процесс АКО характеризуется низкими выходами газа и бензина (5-6 и 6-8 % мас. соответственно ) и высокими выходами газойлевой фракции (порядка 80 %мас.). Выход кокса составляет 125 % от коксуемости сырья по Кондрадсону. Тяжелый газойль и широкая газойлевая фракция являются качественным сырьем каталитического крекинга после предварительной гидроочистки. Применяемый в процессе адсорбент позволяет полностью исключить выбросы оксидов серы с газами регенерации.

 

2.4 Катализаторы крекинга

 

Катализаторы современных крупнотоннажных процессов каталитического крекинга, осуществляемых при высоких температурах (500-800 °С) в режиме интенсивного массо- и теплообмена в аппаратах с движущимся или псевдоожиженным слоем катализатора, должных обладать не только высокими активностью, селективностью и термостабильностью, но и удовлетворять повышенным требованиям к ним по регенерационным, механическим и некоторым другим эксплуатационным свойствам. Промышленные катализаторы крекинга представляют собой в этой связи сложные многокомпонентные системы, состоящие из: 1) матрицы (носителя); 2) активного компонента — цеолита; 3) вспомогательных активных и неактивных добавок.

Матрица катализаторов крекинга выполняет функции как носителя — поверхности, на которой затем диспергируют основной активный компонент — неолит и вспомогательные добавки, так и слабого кислотного катализатора предварительного (первичного) крекирования высокомолекулярного исходного нефтяного сырья. В качестве материала матрицы современных катализаторов крекинга преимущественно применяют синтетический аморфный алюмосиликат с высокой удельной поверхностью и оптимальной поровой структурой, обеспечивающей доступ для крупных молекул крекируемого сырья.

Аморфные алюмосиликаты являлись основными промышленными катализаторами крекинга до разработки цеолитсодержащих катализаторов. Синтезируются они при взаимодействии растворов, содержащих оксиды алюминия и кремния, например жидкого стекла и сернокислого алюминия .

Химический состав аморфного алюмосиликата может быть выражен формулой , где х — число молей на 1 моль . Обычно в промышленных аморфных алюмосиликатах содержание оксида алюминия находится в пределах 6-30% мас.

Аморфные алюмосиликаты обладают ионообменными свойствами, а для придания каталитической активности обрабатывают их раствором сернокислого алюминия для замещения катионов на . Высушенные и прокаленные аморфные алюмосиликаты проявляют протонную и апротонную кислотности. При этом по мере повышения температуры прокаливания происходит превращение протонных кислотных центров в апротонные.

Активным компонентом катализаторов крекинга является цеолит, который позволяет осуществлять вторичные каталитические превращения углеводородов сырья с образованием конечных целевых продуктов.

Цеолиты (от греческого слова цео — кипящий, литос — камень) представляют собой алюмосиликаты с трехмерной кристаллической структурой.

Недостатком всех цеолитов является их не очень высокая механическая прочность в чистом виде, и поэтому они в качестве промышленного катализатора не используются. Обычно их вводят в диспергированном виде в матрицу катализаторов в количестве 10-20% мас.

Вспомогательные добавки улучшают или придают некоторые специфические физико-химические и механические свойства цеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным катализаторам крекинга. Так, матрица и активный компонент – цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для организации интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восстановительного типа. Современные и перспективные процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляющему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу.

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества — основные задачи, поставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосернистых, а за последние годы и высокопарафинистых нефтей, потребовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требованиям, невозможно без применения таких процессов, как каталитический крекинг, каталитический риформинг, гидроочистка, алкилирование и изомеризация, а в некоторых случаях — гидрокрекинг. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ЛИТЕРАТУРЫ

 

  1. Леффлер У.Л. Переработка нефти: - М.: Олимп-Бизнес, 2005.-224с.
  2. Независимая электронная энциклопедия [электронный ресурс] www. wikipedia. ru
  3. Смедович Е.В. Технология переработки нефти и газа: - М.: Химия, 1980.
  4. Технология, экономика и автоматизация процессов переработки нефти и газа/ под ред. С.А.Ахметова.- М.: Химия, 2005.-736с.
  5. www.gazonline.ru

Информация о работе Каталитический крекинг