Компьютер как исторический фактор

Автор работы: Пользователь скрыл имя, 11 Июня 2015 в 11:37, реферат

Описание работы

Компьютер— устройство или система, способное выполнять заданную, чётко определённую изменяемую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой.

Файлы: 1 файл

Компьютер как исторический фактор.docx

— 45.03 Кб (Скачать файл)

Им стал проект по разработке 8-разрядного процессора 8080 (1974 г.). Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого молодой Билл Гейтс написал один из своих первых интерпретаторов языка BASIC. Наверное, именно с этого момента следует вести отсчет 5-го поколения.

 

Пятое поколение ЭВМ (1984 г. – наши дни)

Можно назвать микропроцессорным. Заметьте, что четвертое поколение закончилось только в начале 80-х, то есть родители в лице больших машин и их быстро взрослеющее и набирающее силы «чадо» В течение почти 10 лет относительно мирно существовали вместе. Для них обоих это время пошло только на пользу. Проектировщики больших компьютеров накопили огромный теоретический и практический опыт, а программисты микропроцессоров сумели найти свою, пусть поначалу очень узкую, нишу на рынке.

В 1976 году фирма Intel закончила разработку 16-разрядного процессора 8086. Он имел достаточно большую разрядность регистров (16 бит) и системной шины адреса (20 бит), за счет чего мог адресовать до 1 Мбайт оперативной памяти.

В 1982 году был создан 80286. Этот процессор представлял собой улучшенный вариант 8086. Он поддерживал уже несколько режимов работы: реальный, когда формирование адреса производилось по правилам i8086, и защищенный, который аппаратно реализовывал многозадачность и управление виртуальной памятью. 80286 имел также большую разрядность шины адреса - 24 разряда против 20 у 8086, и поэтому он мог адресовать до 16 Мбайт оперативной памяти. Первые компьютеры на базе этого процессора появились в 1984 году. По своим вычислительным возможностям этот компьютер стал сопоставим с IBM System/370. Поэтому можно считать, что на этом четвертое поколение развития ЭВМ завершилось.

В 1985 году фирма Intel представила первый 32-разрядный микропроцессор 80386, аппаратно совместимый снизу вверх со всеми предыдущими процессорами этой фирмы. Он был гораздо мощнее своих предшественников, имел 32-разрядную архитектуру и мог прямо адресовать до 4 Гбайт оперативной памяти. Процессор 386 стал поддерживать новый режим работы - режим виртуального 8086, который обеспечил не только большую эффективность работы программ, разработанных для 8086, но и позволил осуществлять параллельную работу нескольких таких программ. Еще одно важное нововведение - поддержка страничной организации оперативной памяти - позволило иметь виртуальное пространство памяти размером до 4 Тбайт.

Процессор 386 был первым микропроцессором, в котором использовалась параллельная обработка. Так, одновременно осуществлялись: доступ к памяти и устройствам ввода-вывода, размещение команд в очереди для выполнения, их декодирование, преобразование линейного адреса в физический, а также страничное преобразование адреса (информация о 32-х наиболее часто используемых страницах помещалась в специальную кэш-память).

Вскоре после процессора 386 появился 486. В его архитектуре получили дальнейшее развитие идеи параллельной обработки. Устройство декодирования и исполнения команд было организовано в виде пятиступенчатого конвейера, на втором в различной стадии исполнения могло находиться до 5 команд. На кристалл была помещена кэш-память первого уровня, которая содержала часто используемые код и данные. Кроме этого, появилась кэш-память второго уровня емкостью до 512 Кбайт. Появилась возможность строить многопроцессорные конфигурации. В систему команд процессора были добавлены новые команды. Все эти нововведения, наряду со значительным (до 133 МГц) повышением тактовой частоты микропроцессора, значительно позволили повысить скорость выполнения про грамм.

С 1993 года стали выпускаться микропроцессоры Intel Pentium. Их появление, начале омрачилось ошибкой в блоке операций с плавающей точкой. Эта ошибка была быстро устранена, но недоверие к этим микропроцессорам еще некоторое время оставалось. Pentium продолжил развитие идей параллельной обработки. В устройство декодирования и исполнения команд был добавлен второй конвейер. Теперь два конвейера (называемых u и v) вместе могли исполнять две инструкции за такт. Внутренний кэш был увеличен вдвое - до 8 Кбайт для кода и 8 Кбайт для данных. Процессор стал более интеллектуальным. В него была добавлена возможность предсказания ветвлений, в связи с чем значительно возросла эффективность исполнения нелинейных алгоритмов. Несмотря на то что архитектура системы оставалась все еще 32-разрядной, внутри микропроцессора стали использоваться 128- и 256-разрядные шины передачи данных. Внешняя шина данных была увеличена до 64 бит. Продолжили свое развитие технологии, связанные с многопроцессорной обработкой информации.

Появление микропроцессора Pentium Pro разделило рынок на два сектора - высокопроизводительных рабочих станций и дешевых домашних компьютеров. В процессоре Pentium Pro были реализованы самые передовые технологии. В частности был добавлен еще один конвейер к имевшимся двум у процессора Pentium. Тем самым за один такт работы микропроцессор стал выполнять до трех инструкций. Более того, процессор Pentium Pro позволил осуществлять динамическое исполнение команд (Dynamic Execution). Суть его в том, что три устройства декодирования команд, работая параллельно, делят команды на более мелкие части, называемые микрооперациями. Далее эти микрооперации могут исполняться параллельно пятью устройствами (двумя целочисленными, двумя с плавающей точкой и одним устройством интерфейса с памятью). На выходе эти инструкции опять собираются в первоначальном виде и порядке. Мощь Pentium Pro дополняется усовершенствованной организацией его кэш-памяти. Как и процессор Pentium, он имеет 8 Кбайт кэш-памяти первого уровня и 256 Кбайт кэш-памяти второго уровня. Однако за счет схемных решений (использование архитектуры двойной независимой шины) кэш-память второго уровня расположили на одном кристалле с микропроцессором, что значительно повысило производительность. В Pentium Pro реализовали 36-разрядную адресную шину, что позволило адресовать до 64 Гбайт оперативной памяти.

Процесс развития семейства обычных процессоров Pentium тоже не стоял на месте. Если в процессорах Pentium Pro параллелизм вычислений был реализован за счет архитектурных и схемотехнических решений, то при создании моделей процессора Pentium пошли по другому пути. В них включили новые команды, для поддержки которых несколько изменили программную модель микропроцессора. Эти команды, получившие название MMX-команд (MultiMedia eXtention - мультимедийное расширение системы команд), позволили одновременно обрабатывать несколько единиц однотипных данных. Следующий выпущенный в свет процессор, названный Pentium II, объединил в себе все технологические достижения обоих направлений развития архитектуры Pentium. Кроме этого он имел новые конструктивные особенности, в частности, его корпус выполнен в соответствии с новой технологией изготовления корпусов. Не забыт и рынок портативных компьютеров, в связи с чем процессором поддерживаются несколько режимов энергосбережения.

Процессор Pentium III. Традиционно он поддерживает все достижения своих предшественников, главное (и, возможно, единственное?!) его достоинство - наличие новых 70 команд, Эти команды дополняют группу MMX-команд, но для чисел с плавающей точкой. Для поддержки этих команд в архитектуру процессора был включен специальный блок.

Заключение

Итак, к первому поколению причисляются компьютеры на электронных лампах (такие, как ENIAC), ко второму — транзисторные машины (IBM 7094), к третьему — первые компьютеры на интегральных схемах (IBM 360), к четвертому — персональные компьютеры (линейки ЦП Intel). Что же касается пятого поколения, то оно больше ассоциируется не с конкретной архитектурой, а со сменой парадигмы. Компьютеры будущего будут встраиваться во все мыслимые и немыслимые устройства и за счет этого действительно станут невидимыми. Они прочно войдут в повседневную жизнь — будут открывать двери, включать лампы, распределять деньги и выполнять тысячи других обязанностей. Эта модель, разработанная Марком Вайзером (Mark Weiser) в поздний период его деятельности, первоначально получила название повсеместной компьютеризации, но в настоящее время не менее распространен термин «всепроникающая компьютеризация». Это явление обещает изменить мир не менее радикально, чем промышленная революция.

 

Список используемой литературы

  1. Компьютер – Википедия

https://ru.wikipedia.org/wiki/Компьютер

  1. История создания компьютеров

http://osvoenie-pk.ru/ustr_istoria.htm

  1. История компьютеров – Все о компьютере

http://vok-sk.narod.ru/compu.htm#nach

  1. Основные этапы истории развития компьютеров

http://itandlife.ru/technology/computer-architecture/osnovnye-etapy-istorii-razvitiya-kompyuterov/

 

Содержание

 

 

 

 

 

 


Информация о работе Компьютер как исторический фактор