Автор работы: Пользователь скрыл имя, 01 Ноября 2014 в 15:35, курсовая работа
Яке призначення мережі? Для того щоб відповісти на це питання, давайте почнемо з її назви. Слово «корпорація» означає об'єднання підприємств, що працюють під централізованим керуванням і вирішують загальні задачі. Корпорація є складною, багатопрофільною структурою і внаслідок цього має розподілену ієрархічну систему керування. Крім того, підприємства, відділення й адміністративні офіси, що входять у корпорацію, як правило, розташовані на великій відстані один від одного. Для централізованого керування таким об'єднанням підприємств використовується корпоративна мережа
Вступ
Розділ І. Огляд і архітектура обчислювальних мереж
1.1 Основні означення і терміни
1.2 Переваги використання мереж
1.3 Архітектура мереж
1.3.1 Архітектура термінал – головний комп'ютер
1.3.2 Однорангова архітектура
1.3.3 Архітектура клієнт – сервер
1.3.4 Вибір архітектури мережі
Розділ ІІ. Пошук несправностей в мережах на базі OC Windows
2.1 Проблеми реєстрації робочої станції
2.1.1 Команда ,,ping»
2.2 Пошук несправностей в мережі з виділеним DHCP сервером
2.2.1 Діалог з DHCP сервером
2.2.2 Аналіз діалогу комп’ютерів у мережі
2.3 Визначення швидкодії мережі
2.3.1 Засоби і способи визначення швидкодії мережі
2.3.2 Виявлення джерела впливу на швидкодію мережі
2.4 Причини помилок журналу подій
2.4.1 Метод пошуку серверних проблем
2.4.2 Фільтр перехоплення, та його використання
2.5 Проблеми, що виникають при широкомовленні
Розділ ІІІ. Методи захисту від несанкціонованого доступу в мережі TCP/IP
3.1 Безпека комп’ютерів на базі Windows 2000/XP
3.1.1 Сканування мережі TCP/IP
3.1.2 Інвентаризація мережі
3.1.3 Нульовий сеанс
3.1.4 Реалізація цілі
3.1.5 Приховування слідів
3.2 Засоби віддаленого керування
3.2.1 Програма pcAnywhere
3.2.2 Протокол SNMP
3.3 Функції брандмауерів
3.4 Перехоплення мережевих даних
3.4.1 Фальшиві ARP запити
3.4.2 Фальшива маршрутизація
3.4.3 Перехоплення ТСР-з’єднання
3.5 Комутований доступ до мереж
3.5.1 Сканер PhoneSweep 4.4
3.5.2 Робота з програмою PhoneSweep 4.4
Висновки
Список скорочень і пояснень
Література
• мережному (IP);
• транспортному (TCP, UDP);
• прикладному (FTP, TELNET, HTTP, SMTP ).
Фільтрація мережевого трафіка є основною функцією систем Firewall і дозволяє адміністратору безпеки мережі централізовано здійснювати необхідну мережеву політику безпеки у виділеному сегменті IP-мережі. Тобто, настроївши відповідним чином Firewall, можна дозволити чи заборонити користувачам як доступ із зовнішньої мережі до хостів, що знаходяться в сегменті, який захищається, так і доступ користувачів із внутрішньої мережі до відповідного ресурсу зовнішньої мережі.
2. Proxy-схема з додатковою
ідентифікацією й
Proxy-схема дозволяє, по-перше, при доступі до захищеного Firewall сегменту мережі здійснити на ньому додаткову ідентифікацію й аутентифікацію віддаленого користувача. По-друге, є основою для створення приватних мереж з віртуальними IP-адресами. Proxy-схема призначена для створення з'єднання з кінцевим адресатом через проміжний proxy-сервер (proxy від англ. повноважний) на хості Firewall. На цьому proxy-сервері і може здійснюватися додаткова ідентифікація абонента.
3. Створення приватних віртуальних мереж (Private Virtual Network - PVN) з "віртуальними" IP-адресами (NAT - Network Address Translation).
У випадку, якщо адміністратор безпеки мережі вважає за доцільне приховати топологію своєї внутрішньої IP-мережі, то йому необхідно використовувати системи Firewall для створення приватної мережі (PVN-мережа). Хостам у PVN-мережі призначаються будь-які "віртуальні" IP-адреси. Для адресації в зовнішню мережу (через Firewall) необхідне використання на хості Firewall proxy-серверів, або застосування спеціальних систем роутінгу (маршрутизації). Це відбувається через те, що віртуальна IP-адреса, яка використовується у внутрішній PVN-мережі , не придатна для зовнішньої адресації (зовнішня адресація - це адресація до абонентів, що знаходиться за межами PVN-мережі). Тому proxy-сервер, чи засіб роутінгу повинен здійснювати зв'язок з абонентами з зовнішньої мережі зі своєї дійсної IP-адреси. Ця схема зручна в тому випадку, якщо для створення ІР-мережі виділили недостатню кількість IP-адрес, тому для створення повноцінної IP-мережі з використанням proxy-схеми досить тільки однієї виділеної IP-адреси для proxy-сервера.
Будь-який пристрій, що реалізує хоча б одну з цих функцій Firewall-методики, і є Firewall-пристроєм. Наприклад, ніщо не заважає використовувати в якості Firewall - хосту комп'ютер зі звичайною ОС FreeBSD чи Linux, у якої відповідним чином необхідно скомпілювати ядро ОС. Firewall такого типу буде забезпечувати тільки багаторівневу фільтрацію ІР-трафіка. Пропоновані на ринку Firewall-комплекси, створені на базі ЕОМ звичайно реалізують усі функції Firewall-методики і є повнофункціональними системами Firewall. На рис. 3.20 зображений сегмент мережі, відділений від зовнішньої мережі повнофункціональним Firewall - хостом.
Однак адміністраторам IP-мереж треба розуміти, що Firewall це не гарантія абсолютного захисту від віддалених атак у мережі Internet. Firewall - не стільки засіб забезпечення безпеки, скільки можливість централізовано здійснювати мережну політику розмежування віддаленого доступу до доступних ресурсів мережі. Firewall не зможе запобігти таким видам атак як: аналізу мережного трафіку, помилковий ARP-сервер, помилковий DNS-сервер, підміна одного із суб'єктів TCP-з'єднання, порушення працездатності хосту шляхом створення спрямованої атаки помилковими запитами чи переповнення черги запитів. В таких випадках використання Firewall не допоможе. Для того, щоб вивести з ладу (відрізати від зовнішнього світу) усі хости усередині захищеного Firewall-системою сегмента, досить атакувати тільки один Firewall. Це пояснюється тим, що зв'язок внутрішніх хостів із зовнішнім світом можливий тільки через Firewall.
З усього вищесказаного аж ніяк не випливає, що використання систем Firewall є абсолютно безглуздим, на даний момент цій методиці немає альтернативи. Однак треба чітко розуміти і пам'ятати її основне призначення. Застосування методики Firewall для забезпечення мережної безпеки є необхідною, але аж ніяк не достатньою умовою. Не потрібно вважати, що поставивши Firewall вирішуються всі проблеми з мережною безпекою і усунуться усі можливі віддалені атаки з мережі Internet [7].
3.4 Перехоплення мережевих даних
Для сніфінгу мереж Ethernet зазвичай використовуються мережеві карти, переведені в режим прослуховування. Прослуховування мережі Ethernet вимагає підключення комп'ютера із запущеною програмою-сніфером до сегменту мережі, після чого хакерові стає доступним весь мережевий трафік, що відправляється і отримується комп'ютерами в даному мережевому сегменті. Ще простіше виконати перехоплення трафіку радіомереж, що використовують безпровідні мережеві ретранслятори. В цьому випадку не потрібно навіть шукати місця для підключення до кабелю.
Для технології сніфінгу можна використати программу-сніфер SpyNet, яку можна знайти на багатьох Web-сайтах. Програма SpyNet складається з двох компонентів - CaptureNet і PipeNet. Програма CaptureNet дозволяє перехоплювати пакети, передавані по мережі Ethernet на мережевому рівні, тобто у вигляді кадрів Ethernet. Програма PipeNet дозволяє збирати кадри Ethernet в пакети рівня прикладних програм, відновлюючи, наприклад, повідомлення електронної пошти, повідомлення протоколу HTTP (обмін інформацією з Web-сервером) і виконувати інші функції.
Для захисту від прослуховування мережі застосовуються спеціальні програми, наприклад AntiSniff, які здатні виявляти в мережі комп'ютери, зайняті прослуховуванням мережевого трафіку. Програми антисніфери для вирішення своїх завдань використовують особливу ознаку наявності в мережі прослуховуючих пристроїв. Мережева плата комп’ютера-сніфера повинна знаходитися в спеціальному режимі прослуховування. Знаходячись в режимі прослуховування, мережеві комп'ютери особливим чином реагують на IP-дейтаграми, що посилаються на адресу тестованого хосту. Наприклад, хости, що прослуховують як правило, обробляють весь трафік, що поступає, не обмежуючись тільки відісланими на адресу хосту дейтаграммами. Є і інші ознаки, що вказують на підозрілу поведінку хоста, які здатна розпізнати програма AntiSniff [11].
Поза сумнівом, прослуховування дуже корисне з погляду зловмисника, оскільки дозволяє отримати безліч корисної інформації: передавані по мережі паролі, адреси комп'ютерів мережі, конфіденційні дані, листи і інше. Проте просте прослуховування не дозволяє хакерові втручатися в мережеву взаємодію між двома хостами з метою модифікації і спотворення даних. Для вирішення такого завдання потрібна складніша технологія.
3.4.1 Фальшиві ARP запити
Щоб перехопити і замкнути на себе процес мережевої взаємодії між двома хостами А і В зловмисник може підмінити IP-адреси взаємодіючих хостів своєю IP-адресою, направивши хостам А і В сфальсифіковані повідомлення ARP (Address Resolution Protocol - протокол дозволу адрес).
Для перехоплення мережевого трафіку між хостами А і В хакер нав'язує цим хостам свою IP-адресу, щоб А і В використовували цю фальсифіковану IP-адресу при обміні повідомленнями. Для нав'язування своєї IP-адреси хакер виконує наступні операції.
·Зловмисник визначає МАС-адреси хостів А і В, наприклад, за допомогою команди nbtstat з пакету W2RK.
·Зловмисник відправляє на виявлені МАС-адреси хостів А і В повідомлення, що є сфальсифікованими ARP-відповідями на запити дозволу IP-адресів хостів в МАС-адреси комп'ютерів. Хосту А повідомляється, що IP-адресі хосту В відповідає МАС-адреса комп'ютера зловмисника; хосту В повідомляється, що IP-адресі хосту А також відповідає МАС-адреса комп'ютера зловмисника.
·Хости А і В заносять отримані МАС-адреси в свої кеші ARP і далі використовують їх для відправки повідомлень один одному. Оскільки IP-адресам А і В відповідає МАС-адреса комп'ютера зловмисника, хости А і В, нічого не підозрюючи, спілкуються через посередника, здатного робити з їх посланнями що завгодно.
Для захисту від таких атак мережеві адміністратори повинні підтримувати базу даних з таблицею відповідності МАС-адрес і IP-адрес своїх мережевих комп'ютерів. За допомогою спеціального програмного забезпечення, наприклад, утиліти arpwatch періодично обстежувати мережу і виявляти невідповідності [11].
3.4.2 Фальшива маршрутизація
Щоб перехопити мережевий трафік, зловмисник може підмінити реальну ІР-адресу мережевого маршрутизатора своєю, виконавши це, наприклад, з допомогою сфальсифікованих ICMP-повідомлень Redirect. Отримане повідомлення Redirect хост А сприймає як відповідь на дейтаграмму, відіслану іншому хосту, наприклад, В. Свої дії на повідомлення Redirect хост А визначає, виходячи з вмісту отриманого повідомлення Redirect, і якщо в Redirect задати перенаправлення дейтаграм з А в В по новому маршруту, саме це хост А і зробить.
Для виконання помилкової маршрутизації зловмисник повинен знати деякі подробиці про організацію локальної мережі, в якій знаходиться хост А, в тому числі, IP-адресу маршрутизатора, через яку відправляється трафік з хосту А у В. Знаючи це, зловмисник сформує IP-дейтаграмму, в якій IP-адреса відправника означена як IP-адреса маршрутизатора, а одержувачем вказаний хост А. Також в дейтаграму включається повідомлення ICMP Redirect з полем адреси нового маршрутизатора, встановленим як IP-адреса комп'ютера зловмисника. Отримавши таке повідомлення, хост А відправлятиме всі повідомлення за IP-адресою комп'ютера зловмисника [10].
Для захисту від такої атаки слід відключити (наприклад, за допомогою брандмауера) на хості А обробку повідомлень ICMP Redirect, а виявити ІР-адресу комп'ютера зловмисника може команда tracert. Ці утиліти здатні знайти в локальній мережі додатковий, непередбачений при інсталяції, маршрут, якщо звичайно адміністратор мережі проявить пильність.
Приведені вище приклади перехоплень (якими можливості зловмисників далеко не обмежуються) переконують в необхідності захисту даних, що передаються по мережі, якщо в даних міститься конфіденційна інформація. Єдиним методом захисту від перехоплень мережевого трафіку є використання програм, що реалізовують криптографічні алгоритми і протоколи шифрування, що дозволяють запобігти розкриттю і підміні секретної інформації. Для вирішення таких завдань криптографія надає засоби для шифрування, підпису і перевірки достовірності повідомлень, що передаються по захищених протоколах [12].
3.4.3 Перехоплення ТСР-з’єднання
Найбільш витонченою атакою перехоплення мережевого трафіку слід вважати захоплення TCP-з’єднання (TCP hijacking), коли хакер шляхом генерації і відсилання на хост, що атакується TCP-пакетів, перериває поточний сеанс зв'язку з хостом. Далі, користуючись можливостями протоколу TCP по відновленню перерваного TCP-з’єднання, хакер перехоплює перерваний сеанс зв'язку і продовжує його замість відключеного клієнта.
Протокол TCP (Transmission Control Protocol - протокол управління передачею) є одним з базових протоколів транспортного рівня OSI, що дозволяє встановлювати логічні з'єднання по віртуальному каналу зв'язку. По цьому каналу передаються і приймаються пакети з реєстрацією їх послідовності, здійснюється управління потоком пакетів, організовується повторна передача спотворених пакетів, а в кінці сеансу канал зв'язку розривається.
Протокол TCP є єдиним базовим протоколом з сімейства TCP/IP, що має складну систему ідентифікації повідомлень і з'єднання.
Для ідентифікації TCP-пакету в TCP-заголовку існують два 32-розрядні ідентифікатори, які також відіграють роль лічильника пакетів, що називаються порядковим номером і номером підтвердження. Поле TCP-пакета включає наступні біти керування (в порядку зліва направо):
URG - біт терміновості;
АСК - біт підтвердження;
PSH - біт перенесення;
RST - біт поновлення з'єднання;
SYN - біт синхронізації;
FIN - біт завершення з'єднання.
Розглянемо порядок створення TCP-з’єднання.
1. Якщо хосту А необхідно створити TCP-з’єднання з хостом В, то хост А посилає хосту В наступне повідомлення: A -> B: SYN, ISSa
Це означає, що в повідомленні, яке передається хостом А встановлений біт SYN (Synchronize sequence number - номер послідовності синхронізації), а в полі порядкового номера встановлено початкове 32-бітне значення ISSa (Initial Sequence Number - початковий номер послідовності).
2. У відповідь на отриманий від хосту А запит хост В відповідає повідомленням, в якому встановлений біт SYN і встановлений біт АСК. У полі порядкового номера хост В встановлює своє початкове значення лічильника – ISSb. Поле номера підтвердження при цьому міститиме значення ISSa, отримане в першому пакеті від хосту А і збільшене на одиницю. Таким чином, хост В відповідає таким повідомленням: B-> A: SYN, ACK, ISSb, ACK(ISSa+1)
3. Нарешті, хост А посилає повідомлення хосту В, в якому: встановлений біт АСК; поле порядкового номера містить значення ISSa + 1; поле номера підтвердження містить значення ISSb + 1. Після цього ТСР-з’єднання між хостами А і В вважається встановленим:
A-> B: ACK, ISSa+1, ACK(ISSb+1)
4. Тепер хост А може посилати пакети з даними на хост В по тільки що створеному віртуальному TCP-каналу:
А -> В: АСК, ISSa+1, ACK(ISSb+1); DATA
Тут DATA позначає дані.
Із розглянутого вище алгоритму створення TCP-з’єднання видно, що єдиними ідентифікаторами TCP-абонентів і TCP-з’єднання є два 32-бітні параметри порядкового номера і номера підтвердження - ISSa і ISSb. Отже, якщо хакерові вдасться дізнатися поточні значення полів ISSa і ISSb, то йому ніщо не перешкодить сформувати сфальсифікований TCP-пакет. Це означає, що хакерові досить підібрати поточні значення параметрів ISSa і ISSb пакету TCP для даного TCP-з’єднання, послати пакет з будь-якого хосту Інтернету від імені клієнта даного TCP-підключення, і даний пакет буде сприйнятий як дійсний.
Таким чином, для здійснення описаної вище атаки необхідною і достатньою умовою є знання двох поточних 32-бітових параметрів і ISSb, що ідентифікують TCP-з’єднання. Розглянемо можливі способи їх отримання. У разі, коли хакреський хост підключений до мережевого сегменту, що атакується, завдання отримання значень ISSa і ISSb є тривіальним і вирішується шляхом аналізу мережевого трафіку. Отже, потрібно чітко розуміти, що протокол TCP дозволяє захистити з'єднання тільки у випадку-неможливості перехоплення хакером повідомлень, які передаються по даному з'єднанню, тобто тільки у разі, коли хакреський хост підключений до мережевого сегменту, відмінного від сегменту абонента TCP-з’єднання [4].
Информация о работе Комп’ютерні мережі. Аналіз роботи і оптимізація