Контрольная работа по "Информатике"

Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 00:14, контрольная работа

Описание работы

Задание 1. Структурная схема персонального компьютера. Понятие о шинном интерфейсе. Шинные интерфейсы материнской платы. Процессоры: состав, система команд, основные параметры. Основным устройством ПК является материнская плата, которая определяет его конфигурацию. Материнская плата — основная плата персонального компьютера.
Программные средства сжатия данных. «Классическими» форматами сжатия данных, широко используемыми в повседневной работе с компьютером, являются форматы .ZIP, .RAR и .ARJ. Программные средства, предназначенные для создания и обслуживания архивов, выполненных в данных форматах, приведены в табл. 1.

Файлы: 1 файл

контрольная - копия.docx

— 52.62 Кб (Скачать файл)



 

 

 

 

 

Задание 1.

  1. Структурная схема персонального компьютера. Понятие о шинном интерфейсе. Шинные интерфейсы материнской платы. Процессоры: состав, система команд, основные параметры.

 

Основным  устройством ПК является материнская  плата, которая определяет его конфигурацию. Материнская плата — основная плата персонального компьютера.

 

 

рис.1. Структурная  схема персонального компьютера.

 

 

Все устройства ПК подключаются к этой плате с  помощью разъемов расположенных  на этой плате. Соединение всех устройств  в единую систему обеспечивается с помощью системной магистрали (шины) и логических устройств, размещенных в микросхемах микропроцессорного комплекта (чипсета), представляющие собой линии передачи данных, адресов и управления. От архитектуры этих элементов во многом зависит производительность компьютера.

ISA. Историческим достижением компьютеров платформы IВМ PC стало внедрение почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA (Industry Standard Architecture). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина еще может использоваться в некоторых компьютерах для подключения сравнительно «медленных» внешних устройств, например звуковых карт и модемов.

EISA. Расширением стандарта ISA стал стандарт EISA (Extended ISA), отличающийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA, в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA/EISA и устройств, подключаемых к ним, практически прекращен.

VLB. Название интерфейса переводится как локальная шина стандарта VESA (VESA Local Bus). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поколений частоты основной шины (ISA/EISA) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повышенной пропускной способности, — так появился стандарт VLB, который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую пропускную способность до 130 Мбайт/с.

Основным  недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 МГц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 МГц возможно подключение двух, а при частоте 33 МГц — трех устройств. Активное использование шины VLB продолжалось очень недолго, она была вскоре вытеснена шиной PCI.

PCI. Интерфейс PCI (Peripheral Component Interconnect — стандарт подключения внешних компонентов) был введен в персональных компьютерах во времена процессора 80486 и первых версий Pentium. Это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств.

Данный интерфейс  поддерживает частоту шины 33 МГц  и обеспечивает пропускную способность 132 Мбайт/с. Последние версии интерфейса поддерживают частоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных.

FSB. Шина PCI, появившаяся в компьютерах на базе процессоров Intel Pentium как локальная шина, предназначенная для связи процессора с оперативной памятью, недолго оставалась в этом качестве. Сегодня она используется только как шина для подключения внешних устройств, а для связи процессора и памяти, начиная с процессора Intel Pentium Pro, используется специальная шина, получившая название Front Side Bus (FSB). Эта шина работает на частоте 100-200 МГц. Частота шины FSB является одним из основных потребительских параметров — именно он и указывается в спецификации материнской платы. Современные типы памяти (DDR, SDRAM, RDRAM) способны передавать несколько сигналов за один такт шины FSB, что повышает скорость обмена данными с оперативной памятью.

AGP. Когда параметры шины PCI перестали соответствовать требованиям видеоадаптеров, для них была разработана отдельная шина, получившая название AGP (Advanced Graphic Port — усовершенствованный графический порт). Частота этой шины соответствует частоте шины PC/(33 МГц или 66 МГц), но она имеет много более высокую пропускную способность за счет передачи нескольких сигналов за один такт. Число сигналов, передаваемых за один такт, указывается в виде множителя, например AСР4х (в этом режиме скорость передачи достигает 1066 Мбайт/с). Последняя версия шины AGP имеет кратность 8х.

PCMCIA (Personal Computer Memory Card International Association — стандарт международной ассоциации производителей плат памяти для персональных компьютеров). Этот стандарт определяет интерфейс подключения плоских карт памяти небольших размеров и используется в портативных персональных компьютерах.

USB (Universal Serial Bus — универсальная последовательная магистраль). Это одно из последних нововведений в архитектурах материнских плат. Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика, но вполне достаточна для таких устройств, как клавиатура, мышь, модем, джойстик, принтер и т. п. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в «горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

 

Процессор — основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная  шина. У процессоров Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина  данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина  команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов.

 

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных — как адресные данные, а часть — как команды.

Совокупность  всех возможных команд, которые может  выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и не взаимозаменяемы.

 

Процессоры  с расширенной и сокращенной  системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров семейства Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд — CISС-процессорами (CISC — Complex Instruction Set Computing). В противоположность CISC -процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC — ReducedInstmction Set Computing). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Таким образом, программы, состоящие из простейших команд, выполняются этими процессорами много быстрее.

Оборотная сторона  сокращенного набора команд состоит  в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора. В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

  • CISC -процессоры используют в универсальных вычислительных системах;
  • RISC -процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций. Персональные компьютеры платформы IВМ РС ориентированы на использование CISC -процессоров.

 

К основным параметрам процессоров  относят:

  1. Число вычислительных ядер;
  2. Разрядность регистров;
  3. Разрядность внешних шин данных и адреса;
  4. Объём виртуальной адресуемой памяти;
  5. Максимальный объём сегмента;
  6. Объём физической адресуемой памяти;
  7. Кеш;
  8. Тактовые частота процессора, МГц;
  9. Напряжение питания;
  10. Количество транзисторов;
  11. Техпроцесс, нм;
  12. Площадь кристалла;
  13. Максимально потребляемый ток;
  14. Максимально потребляемая мощность;
  15. Разъём;
  16. Корпус.

 

 

 

 

  1. Программные средства сжатия данных.

«Классическими» форматами сжатия данных, широко используемыми в повседневной работе с компьютером, являются форматы .ZIP, .RAR и .ARJ. Программные средства, предназначенные для создания и обслуживания архивов, выполненных в данных форматах, приведены в табл. 1.

Несмотря  на то что средства архивации, предназначенные для операционной системы MS-DOS, вполне могут работать под управлением Windows, пользоваться ими не рекомендуется. В первую очередь это связано с тем, что при обработке файлов происходит утрата «длинных имен» файлов и подмена их именами MS-DOS по спецификации 8.3. Это может создать потребителю документа определенные неудобства, а в случаях, когда архивация производится с целью резервного копирования, утрата «длинных имен» вообще недопустима.

 

Таблица 1. Средства архивации файлов

Операционная система

Формат

сжатия

Средство

архивации

Средство

разархивирования

MS-DOS

.ZIP

PKZIR.EXE

PKUNZIR.EXE

.RAR

RAR.EXE

UNRAR.EXE

.ARJ

ARJ.EXE

Windows

.ZIP

WinZip, сжатые ZIP-папки, WinRAR

.RAR

WinRAR

.ARJ

WinArj

WinArj, WinRAR


 

В связи с широким распространением нескольких форматов сжатия многие программные средства для сжатия данных начинают приобретать универсальный характер, позволяя упаковывать и распаковывать сжатые архивы разных типов. Программные средства для Windows обычно имеют один «предпочтительный » тип архива, но также справляются с распаковкой данных при работе с архивами других типов.

Наиболее  распространен формат .ZIP, который  является стандартом де-факто для архивов, распространяемых через Интернет. Немаловажную роль в этом играет открытость этого формата. Этот формат является полностью открытым — его использование не требует никаких лицензионных отчислений. Операционная система Windows ХР позволяет рассматривать ZIP-архивы как сжатые папки. Это предполагает полностью «прозрачную» работу с такими архивами — все файловые операции можно выполнять в сжатой папке так же, как в обычной. Однако специализированные средства работы с архивами обеспечивают более широкий набор функций.

Информация о работе Контрольная работа по "Информатике"