Автор работы: Пользователь скрыл имя, 20 Ноября 2013 в 17:18, контрольная работа
Информация - совокупность сведений (данных), воспринимаемых от окружающей среды (входная информация), выдаваемой в окружающую среду (выходная информация), либо сохраняемой внутри некоторой системы (внутренняя информация). Можно привести немало разнообразных свойств информации. Каждая научная дисциплина рассматривает те свойства информации, которые ей наиболее важны. Рассмотрим наиболее важные свойства информации с позиций Информатики.
1. Назовите наиболее важные свойства информации 3
Ответ 3
5. Основные этапы развития вычислительной техники 4
Ответ 4
11. Назначение, основные характеристики и типы мониторов 5
Ответ 5
12. Приведите основные принципы архитектуры ЭВМ, предложенные фон Нейманом 5
Ответ 5
21. Назовите и охарактеризуйте современные операционные системы компании Microsoft 8
Ответ 8
25. Охарактеризуйте СУБД 11
Ответ 11
31. Какие функции выполняет центральный процессор персонального компьютера? 13
Ответ 13
34. Охарактеризуйте этапы разработки экспертных систем 14
Ответ 14
41. Основные возможности электронной почты 15
Ответ 15
51. Определение и классификация ПК 17
Ответ 17
Оглавление
Информация - совокупность сведений (данных), воспринимаемых от окружающей среды (входная информация), выдаваемой в окружающую среду (выходная информация), либо сохраняемой внутри некоторой системы (внутренняя информация).
Можно привести немало разнообразных свойств информации. Каждая научная дисциплина рассматривает те свойства информации, которые ей наиболее важны. Рассмотрим наиболее важные свойства информации с позиций Информатики.
Объективность и субъективность информации Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент. В ходе информационного процесса степень объективности информации всегда понижается.
Полнота информации во многом характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся. Чем полнее данные, тем шире диапазон методов, которые можно использовать, тем проще подобрать метод, вносящий минимум погрешностей в ход информационного процесса.
Адекватность информации – это степень соответствия информации, полученной в информационном процессе, реальному объективному состоянию дела. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако и полные, и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.
Доступность информации – мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Отсутствие доступа к данным при наличии адекватных методов обработки данных приводят к одинаковому результату: информация оказывается недоступной. Отсутствие адекватных методов для работы с данными во многих случаях приводит к применению неадекватных методов, в результате чего образуется неполная, неадекватная или недостоверная информация.
Актуальность информации – это степень соответствия информации текущему моменту времени. Нередко с актуальностью, как и с полнотой, связывают коммерческую ценность информации. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям.
Точность информации определяется степенью близости получаемой информации к реальному состоянию объекта, процесса, явления и т.п. Для информации, отображаемой цифровым кодом, известны четыре классификационных понятия точности:· формальная точность, измеряемая значением единицы младшего разряда числа;· реальная точность, определяемая значением единицы последнего разряда числа, верность которого гарантируется;· максимальная точность, которую можно получить в конкретных условиях функционирования системы;· необходимая точность, определяемая функциональным назначением показателя.
Достоверность информации определяется ее свойством отражать реально существующие объекты с необходимой точностью. Измеряется достоверность информации доверительной вероятностью необходимой точности, т.е. вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности.
Устойчивость информации отражает ее способность реагировать на изменения исходных данных без нарушения необходимой точности. Устойчивость информации, как и репрезентативность, обусловлена выбранной методикой ее отбора и формирования.
Своевременность информации означает ее поступление не позже заранее назначенного момента времени, согласованного со временем решения поставленной задачи.
Выделяют четыре этапа развития вычислительной техники:
Домеханический — с 40—30-го тысячелетия до н. э. - Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании частей тела, в первую очередь пальцев рук и ног.
Механический — с середины XVII в. - Под механическим вычислительным устройством понимается устройство, построенное на механических элементах и обеспечивающее автоматическую передачу из низшего разряда в высший.
Электромеханический — с 90-х годов XIX в. - Электромеханический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет — от первого табулятора Германа Холлерита (1887 г.) до первой ЭВМ ЕNIАС (1945 г.).
Электронный — со второй половины 40-х годов XX в. - Электронный этап можно разбить на поколения ЭВМ, т.е. ЭВМ 1-го поколения, ЭВМ 2-го поколения, ЭВМ 3-го поколения, ЭВМ 4-го поколения.
Мониторы входят в состав любой
компьютерной системы. Они являются
визуальным каналом связи со всеми
прикладными программами и
По способу формирования изображения мониторы можно разделить на три группы:
Типы мониторов | ||
Английское название |
CRT (cathode-ray tube) Display |
LCD (Liquid Crystal Display) |
Русское название |
ЭЛТ (мониторы с электронно-лучевой трубкой) |
ЖК (мониторы на жидких кристаллах) |
Основные характеристики |
видеоразрешение, размер точки, тип трубки |
технология производства, угол обзора, количество цветов, время реакции, яркость и контрастность |
Достоинства |
большое количество отображаемых цветов, невысокая стоимость |
отсутствие излучения, компактность, малое энергопотребление |
Недостатки |
высокий уровень излучения, громоздкость |
инертность изображения, ограниченное число отображаемых цветов, высокая цена |
Основные области |
дизайнерские программы, профессиональные приложения для работы с фото и видео, высокоскоростные игры |
офисные и многие другие приложения, где важна высокая четкость изображения |
Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье "Предварительное рассмотрение логической конструкции электронно-вычислительного устройства”. С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.
В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.
Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы”. Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.
Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рис. 1. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.
Рис. 1. Архитектура ЭВМ, построенной на принципах фон Неймана. Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов от процессора к остальными узлам ЭВМ
Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.
Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно” и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.
В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.
Разработанные фон Нейманом основы
архитектуры вычислительных устройств
оказались настолько
По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.
В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Windows.
1. Графические интерфейсы и расширения для DOS
Эти версии Windows не были полноценными операционными системами, а являлись надстройками к операционной системе MS-DOS. Они работали с процессорами начиная с Intel 8086.
2. Семейство Windows 9x
Включает в себя Windows 95, Windows 98 и Windows Me.
Windows 95 была выпущена в 1995 году. Её отличительными особенностями являются: новый пользовательский интерфейс, поддержка длинных имён файлов, автоматическое определение и конфигурация периферийных устройств Plug and Play, способность исполнять 32-битные приложения и наличие поддержки TCP/IP прямо в системе. Windows 95 использует вытесняющую многозадачность и выполняет каждое 32-битное приложение в своём адресном пространстве.
Операционные
системы этого семейства не являлись
безопасными