Автор работы: Пользователь скрыл имя, 01 Апреля 2015 в 14:58, контрольная работа
В теории информации выделяются три основных направления: структурное, статистическое, семантическое.
Структурное - рассматривает дискретное строение массивов информации и их измерение простым подсчетом информационных элементов. (Простейшее кодирование массивов - комбинаторный метод.)
Статистическое направление оперирует понятием энтропии как меры неопределенности, то есть здесь учитывается вероятность появления тех или иных сообщений.
Тема 1. Основные понятия и методы теории информатики и кодирования. Сигналы, данные, информация. Общая характеристика процессов сбора, передачи, обработки и накопления информации. 3
Структурные меры информации 3
Статистические меры информации 5
Семантические меры информации 10
Тема 2. Технические средства реализации информационных процессов 2
Ранние приспособления и устройства для счёта 2
"Считающие часы» Вильгельма Шикарда 2
Появление аналоговых вычислителей в предвоенные годы 4
Первые электромеханические цифровые компьютеры 4
Британский «Колосс» 5
Первое поколение компьютеров с архитектурой фон Неймана 6
1950-е — начало 1960-х: второе поколение 8
1960-е и далее: третье и последующие поколения 10
1970—1990-четвертое поколение ЭВМ 11
1990—…до наших дней-5 поколение ЭВМ 12
Тема 3. Программные средства реализации информационных процессов 2
Тема 4. Модели решения функциональных и вычислительных задач 4
Компьютерное моделирование 5
Моделирование и его виды 5
Особенности компьютерного моделирования 6
Тема 5. Основы алгоритмизации. Технологии программирования. Языки программирования высокого уровня 7
ЖИЗНЕННЫЙ ЦИКЛ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ 8
Тема 6. Компьютерные сети. Методы защиты информации 14
Сетевые протоколы. Стеки протоколов. 14
Основные сетевые протоколы 16
Список литературы 16
Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них — собственно компьютер, в котором связь с пользователем осуществляет блок, называемый «интеллектуальным интерфейсом». Задача интерфейса — понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.
Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.
Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.
Пример: IBM eServer z990
Изготовлен в 2003 г. Физические параметры: вес 2000 кг., потребляемая мощность 21 КВт., площадь 2,5 кв. м., высота 1,94 м., емкость ОЗУ 256 ГБайт, производительность — 9 млрд. инструкций/сек.
Тема 3. Программные средства реализации информационных процессов
Реляционные базы данных.
Реляционная база данных – это совокупность отношений, содержащих всю информацию, которая должна храниться в БД. Однако пользователи могут воспринимать такую базу данных как совокупность таблиц. Так на рис. 3.2 показаны таблицы базы данных, построенные по инфологической модели базы данных "Питание"
Продукты
|
Состав
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Поставки
|
Города
Город |
Страна |
Киев |
Украина |
Пекин |
Китай |
Рига |
Латвия |
Рис. 3.2. База данных "Питание"
Каждая таблица состоит из однотипных строк и имеет уникальное имя.
2. Строки имеют фиксированное число полей (столбцов) и значений (множественные поля и повторяющиеся группы недопустимы). Иначе говоря, в каждой позиции таблицы на пересечении строки и столбца всегда имеется в точности одно значение или ничего.
3. Строки таблицы обязательно отличаются друг от друга хотя бы единственным значением, что позволяет однозначно идентифицировать любую строку такой таблицы.
4.Столбцам таблицы однозначно присваиваются имена, и в каждом из них размещаются однородные значения данных (даты, фамилии, целые числа или денежные суммы).
5.Полное информационное
6. При выполнении операций с таблицей ее строки и столбцы можно обрабатывать в любом порядке безотносительно к их информационному содержанию. Этому способствует наличие имен таблиц и их столбцов, а также возможность выделения любой их строки или любого набора строк с указанными признаками (например, рейсов с пунктом назначения "Париж" и временем прибытия до 12 часов).
Тема 4. Модели решения функциональных и вычислительных задач
Моделирование является одним из способов познания мира.
Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.
Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.
Объект, который получается в результате моделирования, называется моделью. Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.
Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.
Моделирование проходит три этапа:
Видов моделирования огромное количество. Вот некоторые примеры типов моделей:
Математические модели. Это знаковые модели, описывающие определенные числовые соотношения.
Графические модели. Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.
Имитационные модели. Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.
Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.
Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.
Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.
Для компьютерного моделирования важно наличие определенного программного обеспечения.
При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.
Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.
Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.
С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.
Если система сложна, а требуется проследить за каждым ее элементом, то на помощь могут придти компьютерные имитационные модели. На компьютере можно воспроизвести последовательность временных событий, а потом обработать большой объем информации.
Однако следует четко понимать, что компьютер является хорошим инструментом для создания и исследования моделей, но он их не придумывает. Абстрактный анализ окружающего мира с целью воссоздания его в модели выполняет человек.
Тема 5. Основы алгоритмизации. Технологии программирования. Языки программирования высокого уровня
ЖИЗНЕННЫЙ ЦИКЛ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
Значительное место среди информационных продуктов и услуг занимают компьютерные программные средства.
Жизненный цикл создания и использования компьютерных программ отражает различные их состояния, начиная с момента возникновения необходимости в данном программном изделии и заканчивая моментом его полного выхода из употребления у всех пользователей. Традиционно выделяют следующие основные этапы жизненного цикла программного обеспечения:
анализ требований,
проектирование,
кодирование (программирование),
тестирование и отладка,
эксплуатация и сопровождение.
Особенностью разработки программного продукта является принятие решений на начальных этапах с их реализацией на последующих этапах. Ошибки в требованиях к программному продукту способны привести не только к потерям на этапах разработки и эксплуатации, но и к провалу проекта. Внесение изменений в спецификацию программного продукта чаще всего вызывает необходимость повторить все следующие этапы проектирования и создания программного продукта.
В коммерческом программном обеспечении жизненный цикл определяется моментом начала его продаж.
Разработчики стремятся сделать максимально возможным период жизненного цикла информационных продуктов и услуг. Для большинства современных компьютерных программ длительность жизненного цикла равна двум–трём годам, хотя встречаются программы, существующие десять и более лет.
Для увеличения этого периода необходимо постоянно осуществлять маркетинговые и иные мероприятия по их поддержке. Падение продаж и интереса к информационным продуктам и услугам является сигналом к:
а) изменению программного продукта и услуг,
б) изменению цены на них, в) проведению модификации или снятию с продажи и предоставления.
Графическая модель жизненного цикла продукта или услуги, предложенная зарубежными специалистами в 1991 году, приведена на рис. 1.
Прдажи |
Время | |||
Разработка |
Рост |
Зрелость |
Упадок |
Рис. 1. Графическая модель жизненного цикла продуктов и услуг.
Обычно, под термином “программный продукт” для компьютерных информационных технологий принято понимать необходимое им программное обеспечение (ПО).
Основной нормативный документ, регламентирующий ЖЦ ПО – международный стандарт ISO/IEC 12207 (ISO, International Organization of Standardization – Международная организация по стандартизации, IEC, International Electrotechnical Commission – Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, выполняемые во время создания ПО.
Согласно этому стандарту, структура ЖЦ ПО базируется на трёх группах процессов:
1) основные
процессы ЖЦ ПО (приобретение, поставка,
разработка, эксплуатация, сопровождение);2)
Разработка ПО– это, как правило, анализ, проектирование и реализация (программирование). Она включает все работы по созданию ПО и его компонент в соответствии с заданными требованиями, в том числе оформление проектной и эксплуатационной документации, подготовку материалов, необходимых для проверки работоспособности и соответствующего качества программных продуктов, материалов, для организации обучения персонала и т.д.
Эксплуатация включает работы по внедрению компонентов ПО в эксплуатацию, в том числе конфигурирование БД и рабочих мест пользователей, обеспечение эксплуатационной документацией, проведение обучения персонала и т.д., и непосредственно эксплуатацию, в том числе локализацию проблем и устранение причин их возникновения, модификацию ПО в рамках установленного регламента, подготовку предложений по совершенствованию, развитию и модернизации системы.